Alpha-synuclein: prion or prion-like?

  • Rehana K. LeakEmail author
  • Matthew P. Frosch
  • Thomas G. Beach
  • Glenda M. Halliday
Commentary Letter

Misfolded alpha-synuclein is a corruptive seed, but is it infectious?

Alpha-synuclein is a natively unfolded or intrinsically disordered protein, but it can also assume amphipathic alpha-helical shapes in the presence of negatively charged lipids. In Lewy body disorders, alpha-synuclein monomers aggregate into oligomers, protofibrils, and fibrils, forming part of the hallmark amyloid inclusions known as Lewy bodies and Lewy neurites. Proteins exist in biological settings in multiple conformations, often with varied biological functions, and the transitions between conformations include structures that seed the nucleated growth of aggregates [10]. After the kinetic barrier to aggregation of natively monomeric proteins is (rarely) overcome, the global free-energy minimum favors the precipitation of hydrophobically packed protein masses [15]. Once this low-energy state is acquired, it may not be energetically feasible to proteolyze and resolve the protein mass, and therefore, “the...



We apologize to those authors whose work we had no room to cite. This commentary was supported by National Institutes of Health (NIH) Grants 1R15NS093539 and 1R21NS107960 to Rehana Leak. Additional support was provided by NIH Grants P30AG062421 to Matthew Frosch, NIH Grants U24NS072026 and P30AG19610 to Thomas Beach, and National Health and Medical Research Council (NHMRC) Grant #1079679 to Senior Principal Research Fellow Glenda Halliday. The authors declare no conflicts of interest.


  1. 1.
    Aguzzi A (2009) Cell biology: beyond the prion principle. Nature 459:924–925. CrossRefGoogle Scholar
  2. 2.
    Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J et al (2009) Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 117:613–634. CrossRefGoogle Scholar
  3. 3.
    Beekes M, Thomzig A, Schulz-Schaeffer WJ, Burger R (2014) Is there a risk of prion-like disease transmission by Alzheimer- or Parkinson-associated protein particles? Acta Neuropathol 128:463–476. CrossRefGoogle Scholar
  4. 4.
    Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Suppl 3):1–5CrossRefGoogle Scholar
  5. 5.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211CrossRefGoogle Scholar
  6. 6.
    Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536CrossRefGoogle Scholar
  7. 7.
    Breid S, Bernis ME, Babila JT, Garza MC, Wille H, Tamguney G (2016) Neuroinvasion of alpha-synuclein prionoids after intraperitoneal and intraglossal inoculation. J Virol 90:9182–9193. CrossRefGoogle Scholar
  8. 8.
    Burke RE, Dauer WT, Vonsattel JP (2008) A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 64:485–491. CrossRefGoogle Scholar
  9. 9.
    Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM et al (2016) Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep 6:34477. CrossRefGoogle Scholar
  10. 10.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. CrossRefGoogle Scholar
  11. 11.
    Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H (2002) Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426CrossRefGoogle Scholar
  12. 12.
    Fares MB, Ait-Bouziad N, Dikiy I, Mbefo MK, Jovicic A, Kiely A et al (2014) The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of alpha-synuclein, and enhances its secretion and nuclear localization in cells. Hum Mol Genet 23:4491–4509. CrossRefGoogle Scholar
  13. 13.
    Fredricks DN, Relman DA (1996) Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev 9:18–33CrossRefGoogle Scholar
  14. 14.
    Ghosh D, Sahay S, Ranjan P, Salot S, Mohite GM, Singh PK et al (2014) The newly discovered Parkinson’s disease associated Finnish mutation (A53E) attenuates alpha-synuclein aggregation and membrane binding. Biochemistry 53:6419–6421. CrossRefGoogle Scholar
  15. 15.
    Guest WC, Silverman JM, Pokrishevsky E, O’Neill MA, Grad LI, Cashman NR (2011) Generalization of the prion hypothesis to other neurodegenerative diseases: an imperfect fit. J Toxicol Environ Health A 74:1433–1459. CrossRefGoogle Scholar
  16. 16.
    Haley NJ, Mathiason CK, Carver S, Zabel M, Telling GC, Hoover EA (2011) Detection of chronic wasting disease prions in salivary, urinary, and intestinal tissues of deer: potential mechanisms of prion shedding and transmission. J Virol 85:6309–6318. CrossRefGoogle Scholar
  17. 17.
    Halliday GM, Macdonald V, Henderson JM (2005) A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson’s disease. Brain 128:2272–2280. CrossRefGoogle Scholar
  18. 18.
    Irwin DJ, Abrams JY, Schonberger LB, Leschek EW, Mills JL, Lee VM et al (2013) Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol 70:462–468. CrossRefGoogle Scholar
  19. 19.
    Jaunmuktane Z, Mead S, Ellis M, Wadsworth JD, Nicoll AJ, Kenny J et al (2015) Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 525:247–250. CrossRefGoogle Scholar
  20. 20.
    Johansen KK, Torp SH, Farrer MJ, Gustavsson EK, Aasly JO (2018) A case of parkinson’s disease with no Lewy body pathology due to a homozygous exon deletion in Parkin. Case Rep Neurol Med 2018:6838965. Google Scholar
  21. 21.
    Killinger BA, Labrie V (2017) Vertebrate food products as a potential source of prion-like alpha-synuclein. NPJ Parkinsons Dis 3:33. CrossRefGoogle Scholar
  22. 22.
    Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S et al (2019) Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson’s disease. Neuron. Google Scholar
  23. 23.
    Koch R, Pinner M, Pinner BR, National tuberculosis association (1932) The aetiology of tuberculosis. National tuberculosis association, SmyrnaGoogle Scholar
  24. 24.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. CrossRefGoogle Scholar
  25. 25.
    Kordower JH, Dodiya HB, Kordower AM, Terpstra B, Paumier K, Madhavan L et al (2011) Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat. Neurobiol Dis 43:552–557. CrossRefGoogle Scholar
  26. 26.
    Krstic D, Knuesel I (2013) The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer’s disease. Acta Neuropathol Commun 1:62. CrossRefGoogle Scholar
  27. 27.
    Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. CrossRefGoogle Scholar
  28. 28.
    Li JY, Englund E, Widner H, Rehncrona S, Bjorklund A, Lindvall O et al (2010) Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord 25:1091–1096. CrossRefGoogle Scholar
  29. 29.
    Lohmann S, Bernis ME, Tachu BJ, Ziemski A, Grigoletto J, Tamguney G (2019) Oral and intravenous transmission of alpha-synuclein fibrils to mice. Acta Neuropathol. Google Scholar
  30. 30.
    Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953. CrossRefGoogle Scholar
  31. 31.
    MacDonald V, Halliday GM (2002) Selective loss of pyramidal neurons in the pre-supplementary motor cortex in Parkinson’s disease. Mov Disord 17:1166–1173. CrossRefGoogle Scholar
  32. 32.
    Milber JM, Noorigian JV, Morley JF, Petrovitch H, White L, Ross GW et al (2012) Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology 79:2307–2314. CrossRefGoogle Scholar
  33. 33.
    Olanow CW, Perl DP, DeMartino GN, McNaught KS (2004) Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol 3:496–503. CrossRefGoogle Scholar
  34. 34.
    Orru CD, Bongianni M, Tonoli G, Ferrari S, Hughson AG, Groveman BR et al (2014) A test for Creutzfeldt-Jakob disease using nasal brushings. N Engl J Med 371:519–529. CrossRefGoogle Scholar
  35. 35.
    Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I (2005) Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57:82–91. CrossRefGoogle Scholar
  36. 36.
    Parkkinen L, O’Sullivan SS, Collins C, Petrie A, Holton JL, Revesz T et al (2011) Disentangling the relationship between lewy bodies and nigral neuronal loss in Parkinson’s disease. J Parkinsons Dis 1:277–286. Google Scholar
  37. 37.
    Parkkinen L, Pirttila T, Tervahauta M, Alafuzoff I (2005) Widespread and abundant alpha-synuclein pathology in a neurologically unimpaired subject. Neuropathology 25:304–314CrossRefGoogle Scholar
  38. 38.
    Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M et al (2015) Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344. CrossRefGoogle Scholar
  39. 39.
    Poulopoulos M, Levy OA, Alcalay RN (2012) The neuropathology of genetic Parkinson’s disease. Mov Disord 27:831–842. CrossRefGoogle Scholar
  40. 40.
    Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590. CrossRefGoogle Scholar
  41. 41.
    Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB et al (2015) Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA 112:E5308–E5317. CrossRefGoogle Scholar
  42. 42.
    Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S, Perez-Villalba A et al (2014) Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362. CrossRefGoogle Scholar
  43. 43.
    Ross OA, Toft M, Whittle AJ, Johnson JL, Papapetropoulos S, Mash DC et al (2006) Lrrk2 and Lewy body disease. Ann Neurol 59:388–393. CrossRefGoogle Scholar
  44. 44.
    Rudge P, Jaunmuktane Z, Adlard P, Bjurstrom N, Caine D, Lowe J et al (2015) Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 138:3386–3399. CrossRefGoogle Scholar
  45. 45.
    Sacino AN, Brooks M, Thomas MA, McKinney AB, Lee S, Regenhardt RW et al (2014) Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci USA 111:10732–10737. CrossRefGoogle Scholar
  46. 46.
    Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP et al (2019) Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci 22:1099–1109. CrossRefGoogle Scholar
  47. 47.
    Surmeier DJ, Obeso JA, Halliday GM (2017) Parkinson’s disease is not simply a prion disorder. J Neurosci 37:9799–9807. CrossRefGoogle Scholar
  48. 48.
    Tamguney G, Miller MW, Wolfe LL, Sirochman TM, Glidden DV, Palmer C et al (2009) Asymptomatic deer excrete infectious prions in faeces. Nature 461:529–532. CrossRefGoogle Scholar
  49. 49.
    Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM (2004) Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 279:4625–4631. CrossRefGoogle Scholar
  50. 50.
    Van Den Berge N, Ferreira N, Gram H, Mikkelsen TW, Alstrup AKO, Casadei N et al (2019) Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. Google Scholar
  51. 51.
    Volpicelli-Daley LA (2017) Effects of alpha-synuclein on axonal transport. Neurobiol Dis 105:321–327. CrossRefGoogle Scholar
  52. 52.
    Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Pharmaceutical Sciences Division, Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghUSA
  2. 2.C.S. Kubik Laboratory for NeuropathologyMassachusetts General HospitalBostonUSA
  3. 3.Civin Laboratory for NeuropathologyBanner Sun Health Research InstituteSun CityUSA
  4. 4.Brain and Mind Centre and Central Clinical SchoolUniversity of SydneySydneyAustralia

Personalised recommendations