Advertisement

Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein

  • Luis Aragão Gomes
  • Silvia Andrea Hipp
  • Ajeet Rijal Upadhaya
  • Karthikeyan Balakrishnan
  • Simona Ospitalieri
  • Marta J. Koper
  • Pablo Largo-Barrientos
  • Valerie Uytterhoeven
  • Julia Reichwald
  • Sabine Rabe
  • Rik Vandenberghe
  • Christine A. F. von Arnim
  • Thomas Tousseyn
  • Regina Feederle
  • Camilla Giudici
  • Michael Willem
  • Matthias Staufenbiel
  • Dietmar Rudolf ThalEmail author
Original Paper

Abstract

Extracellular deposition of amyloid β-protein (Aβ) in amyloid plaques and intracellular accumulation of abnormally phosphorylated τ-protein (p-τ) in neurofibrillary tangles (NFTs) represent pathological hallmark lesions of Alzheimer’s disease (AD). Both lesions develop in parallel in the human brain throughout the preclinical and clinical course of AD. Nevertheless, it is not yet clear whether there is a direct link between Aβ and τ pathology or whether other proteins are involved in this process. To address this question, we crossed amyloid precursor protein (APP) transgenic mice overexpressing human APP with the Swedish mutation (670/671 KM → NL) (APP23), human wild-type APP (APP51/16), or a proenkephalin signal peptide linked to human Aβ42 (APP48) with τ-transgenic mice overexpressing human mutant 4-repeat τ-protein with the P301S mutation (TAU58). In 6-month-old APP23xTAU58 and APP51/16xTAU58 mice, soluble Aβ was associated with the aggravation of p-τ pathology propagation into the CA1/subiculum region, whereas 6-month-old TAU58 and APP48xTAU58 mice neither exhibited significant amounts of p-τ pathology in the CA1/subiculum region nor displayed significant levels of soluble Aβ in the forebrain. In APP23xTAU58 and APP51/16xTAU58 mice showing an acceleration of p-τ propagation, Aβ and p-τ were co-immunoprecipitated with cellular prion protein (PrPC). A similar interaction between PrPC, p-τ and Aβ was observed in human AD brains. This association was particularly noticed in 60% of the symptomatic AD cases in our sample, suggesting that PrPC may play a role in the progression of AD pathology. An in vitro pull-down assay confirmed that PrPC is capable of interacting with Aβ and p-τ. Using a proximity ligation assay, we could demonstrate proximity (less than ~ 30–40 nm distance) between PrPC and Aβ and between PrPC and p-τ in APP23xTAU58 mouse brain as well as in human AD brain. Proximity between PrPC and p-τ was also seen in APP51/16xTAU58, APP48xTAU58, and TAU58 mice. Based on these findings, it is tempting to speculate that PrPC is a critical player in the interplay between Aβ and p-τ propagation at least in a large group of AD cases. Preexisting p-τ pathology interacting with PrPC, thereby, appears to be a prerequisite for Aβ to function as a p-τ pathology accelerator via PrPC.

Keywords

Tau-protein Amyloid-β Cross seeding Alzheimer’s disease Transgenic mice Neuropathology Prion protein 

Notes

Acknowledgements

We thank Dr. Peter Davies, Department of Pathology, Albert Einstein College of Medicine, USA for the gift of the PHF1 and TG3 antibodies and Dr. Marcus Fändrich, Institute of Pharmaceutical Biotechnology, Center for Biomedical Research, University of Ulm, Germany for the gift of B10AP antibody fragments. The administrative and technical help of Mrs. Alicja Ronisz is gratefully acknowledged.

Author contributions

Study design: DRT and MS; biochemistry: SAH, LAG, ARU, PLB, VU, KB, RF, CG, and MW; histology: SAH, ARU, MJK, SO, LAG, and DRT; animal experiments: JR, SR, and MS; neuropathology: DRT and TT; clinical neurology: RV and CAFA. Statistical analysis: DRT, LAG, and SAH. Data interpretation: DRT, LAG, and SAH; manuscript preparation: SAH, LAG, and DRT; critical manuscript review: ARU, KB, MJK, SO, PLB, VU, JR, SR, RV, CAFA, TT, RF, CG, MW, and MS.

Funding

Alzheimer Forschung Initiative (AFI) #10810 (DRT); Fonds Wetenschappelijk Onderzoek (FWO) G0F8516N (DRT, RV); Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (IWT 135043) (RV, DRT).

Compliance with ethical standards

Conflict of interest

DRT received consultant honorary from GE-Healthcare (UK), and Covance Laboratories (UK), speaker honorary from Novartis Pharma AG (Switzerland), travel reimbursement from GE-Healthcare (UK), and UCB (Belgium), and collaborated with Novartis Pharma AG (Switzerland), Probiodrug (Germany), GE-Healthcare (UK), and Janssen Pharmaceutical Companies (Belgium). JR and MS were employees of Novartis Pharma Basel and SR is employee of Novartis Pharma Basel (Switzerland). CAFvA received honoraria from serving on the scientific advisory board of Nutricia GmbH (2014), Roche (2018) and Honkong University Research Council (2014) and has received funding for travel and speaker honoraria from Nutricia GmbH (2014–2015), Lilly Deutschland GmbH (2013–2016), Desitin Arzneimittel GmbH (2014), Biogen (2016–2018), Roche (2017–2018), and Dr. Willmar Schwabe GmbH&Co. KG (2014–2015).

Supplementary material

401_2019_2053_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3087 kb)

References

  1. 1.
    Abramowski D, Rabe S, Rijal Upadhaya A, Reichwald J, Danner S, Staab D et al (2012) Transgenic expression of intraneuronal Abeta42 but not Abeta40 leads to cellular Abeta lesions, degeneration and functional impairment without typical Alzheimer’s disease pathology. J Neurosci 32:1273–1283CrossRefPubMedGoogle Scholar
  2. 2.
    Alzheimer A (1907) Ueber eine eigenartige Erkrankung der Hirnrinde. Allg Zschr Psych 64:146–148Google Scholar
  3. 3.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639CrossRefPubMedGoogle Scholar
  4. 4.
    Attems J, Thomas A, Jellinger K (2012) Correlations between cortical and subcortical tau pathology. Neuropathol Appl Neurobiol 38:582–590CrossRefPubMedGoogle Scholar
  5. 5.
    Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E et al (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA 107:2295–2300CrossRefPubMedGoogle Scholar
  6. 6.
    Bancher C, Braak H, Fischer P, Jellinger KA (1993) Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients. Neurosci Lett 162:179–182CrossRefPubMedGoogle Scholar
  7. 7.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216CrossRefPubMedGoogle Scholar
  9. 9.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595CrossRefPubMedGoogle Scholar
  11. 11.
    Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathological process in Alzheimer’s disease: age categories 1 year to 100 years. J Neuropathol Exp Neurol 70:960–969CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brody AH, Strittmatter SM (2018) Synaptotoxic signaling by amyloid beta oligomers in Alzheimer’s disease through prion protein and mGluR5. Adv Pharmacol 82:293–323CrossRefPubMedGoogle Scholar
  14. 14.
    Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130CrossRefPubMedGoogle Scholar
  15. 15.
    Caballero B, Wang Y, Diaz A, Tasset I, Juste YR, Stiller B et al (2018) Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell 17:e12692CrossRefGoogle Scholar
  16. 16.
    Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, de Strooper B et al (2015) Synaptic contacts enhance cell-to-cell tau pathology propagation. Cell Rep 11:1176–1183CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Calella AM, Farinelli M, Nuvolone M, Mirante O, Moos R, Falsig J et al (2010) Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med 2:306–314CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen RJ, Chang WW, Lin YC, Cheng PL, Chen YR (2013) Alzheimer’s amyloid-beta oligomers rescue cellular prion protein induced tau reduction via the Fyn pathway. ACS Chem Neurosci 4:1287–1296CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-beta oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 64:S567–S610CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cox TO, Gunther EC, Brody AH, Chiasseu MT, Stoner A, Smith LM et al (2019) Anti-PrP(C) antibody rescues cognition and synapses in transgenic alzheimer mice. Ann Clin Transl Neurol 6:554–574CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    De Mario A, Castellani A, Peggion C, Massimino ML, Lim D, Hill AF et al (2015) The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase. Front Cell Neurosci 9:416CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Esiri MM, Carter J, Ironside JW (2000) Prion protein immunoreactivity in brain samples from an unselected autopsy population: findings in 200 consecutive cases. Neuropathol Appl Neurobiol 26:273–284CrossRefPubMedGoogle Scholar
  24. 24.
    Falker C, Hartmann A, Guett I, Dohler F, Altmeppen H, Betzel C et al (2016) Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity. J Neurochem 137:88–100CrossRefPubMedGoogle Scholar
  25. 25.
    Ferreira DG, Temido-Ferreira M, Vicente Miranda H, Batalha VL, Coelho JE, Szego EM et al (2017) alpha-synuclein interacts with PrP(C) to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 20:1569–1579CrossRefPubMedGoogle Scholar
  26. 26.
    Ferrer I, Blanco R, Carmona M, Puig B, Ribera R, Rey MJ et al (2001) Prion protein expression in senile plaques in Alzheimer’s disease. Acta Neuropathol 101:49–56PubMedGoogle Scholar
  27. 27.
    Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477CrossRefPubMedGoogle Scholar
  28. 28.
    Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527CrossRefPubMedGoogle Scholar
  29. 29.
    Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Lauren J, Gimbel ZA et al (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30:6367–6374CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495CrossRefPubMedGoogle Scholar
  31. 31.
    Griffiths HH, Whitehouse IJ, Hooper NM (2012) Regulation of amyloid-beta production by the prion protein. Prion 6:217–222CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Grinberg LT, Rub U, Ferretti RE, Nitrini R, Farfel JM, Polichiso L et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416CrossRefPubMedGoogle Scholar
  33. 33.
    Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089PubMedGoogle Scholar
  34. 34.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gunther EC, Smith LM, Kostylev MA, Cox TO, Kaufman AC, Lee S et al (2019) Rescue of transgenic Alzheimer’s pathophysiology by polymeric cellular prion protein antagonists. Cell Rep 26(145–158):e8Google Scholar
  36. 36.
    Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325CrossRefPubMedGoogle Scholar
  37. 37.
    Habicht G, Haupt C, Friedrich RP, Hortschansky P, Sachse C, Meinhardt J et al (2007) Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Abeta protofibrils. Proc Natl Acad Sci USA 104:19232–19237CrossRefPubMedGoogle Scholar
  38. 38.
    He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L et al (2018) Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38CrossRefPubMedGoogle Scholar
  39. 39.
    Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD et al (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7:954–960CrossRefPubMedGoogle Scholar
  40. 40.
    Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102CrossRefPubMedGoogle Scholar
  41. 41.
    Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hu NW, Corbett GT, Moore S, Klyubin I, O’Malley TT, Walsh DM et al (2018) Extracellular forms of Abeta and tau from iPSC models of Alzheimer’s disease disrupt synaptic plasticity. Cell Rep 23:1932–1938CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572CrossRefPubMedGoogle Scholar
  44. 44.
    Hurtado DE, Molina-Porcel L, Iba M, Aboagye AK, Paul SM, Trojanowski JQ et al (2010) A{beta} accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am J Pathol 177:1977–1988CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National institute on aging—Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ishizawa K, Komori T, Shimazu T, Yamamoto T, Kitamoto T, Shimazu K et al (2002) Hyperphosphorylated tau deposition parallels prion protein burden in a case of Gerstmann–Straussler–Scheinker syndrome P102L mutation complicated with dementia. Acta Neuropathol 104:342–350PubMedGoogle Scholar
  47. 47.
    Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397CrossRefPubMedGoogle Scholar
  48. 48.
    Jicha GA, Lane E, Vincent I, Otvos L Jr, Hoffmann R, Davies P (1997) A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer’s disease. J Neurochem 69:2087–2095CrossRefPubMedGoogle Scholar
  49. 49.
    Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefPubMedGoogle Scholar
  51. 51.
    Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA et al (2012) The complex PrP(c)–Fyn couples human oligomeric Abeta with pathological tau changes in Alzheimer’s disease. J Neurosci 32:16857-71aPubMedGoogle Scholar
  52. 52.
    Lau DH, Hogseth M, Phillips EC, O’Neill MJ, Pooler AM, Noble W et al (2016) Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer’s disease. Acta Neuropathol Commun 4:49CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491CrossRefPubMedGoogle Scholar
  55. 55.
    Lewis V, Whitehouse IJ, Baybutt H, Manson JC, Collins SJ, Hooper NM (2012) Cellular prion protein expression is not regulated by the Alzheimer’s amyloid precursor protein intracellular domain. PLoS One 7:e31754CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Li C, Gotz J (2018) Pyk2 is a novel tau tyrosine kinase that is regulated by the tyrosine kinase fyn. J Alzheimers Dis 64:205–221CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R et al (2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA 101:3632–3637CrossRefPubMedGoogle Scholar
  58. 58.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249CrossRefPubMedGoogle Scholar
  59. 59.
    Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM et al (2010) The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain 133:1328–1341CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    McMillan P, Korvatska E, Poorkaj P, Evstafjeva Z, Robinson L, Greenup L et al (2008) Tau isoform regulation is region- and cell-specific in mouse brain. J Comp Neurol 511:788–803CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486CrossRefGoogle Scholar
  62. 62.
    Mondragon-Rodriguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N et al (2012) Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. J Biol Chem 287:32040–32053CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Nisbet RM, Polanco JC, Ittner LM, Gotz J (2015) Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol 129:207–220CrossRefPubMedGoogle Scholar
  64. 64.
    Nygaard HB, van Dyck CH, Strittmatter SM (2014) Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimers Res Ther 6:8CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332CrossRefPubMedGoogle Scholar
  66. 66.
    Ondrejcak T, Hu NW, Qi Y, Klyubin I, Corbett GT, Fraser G et al (2019) Soluble tau aggregates inhibit synaptic long-term depression and amyloid beta-facilitated LTD in vivo. Neurobiol Dis 127:582–590CrossRefPubMedGoogle Scholar
  67. 67.
    Ondrejcak T, Klyubin I, Corbett GT, Fraser G, Hong W, Mably AJ et al (2018) Cellular prion protein mediates the disruption of hippocampal synaptic plasticity by soluble tau in vivo. J Neurosci 38:10595–10606CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ordonez-Gutierrez L, Torres JM, Gavin R, Anton M, Arroba-Espinosa AI, Espinosa JC et al (2013) Cellular prion protein modulates beta-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging 34:2793–2804CrossRefPubMedGoogle Scholar
  69. 69.
    Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 39:669–673CrossRefPubMedGoogle Scholar
  70. 70.
    Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, Manson JC et al (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci USA 104:11062–11067CrossRefPubMedGoogle Scholar
  71. 71.
    Peters PJ, Mironov A Jr, Peretz D, van Donselaar E, Leclerc E, Erpel S et al (2003) Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J Cell Biol 162:703–717CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Rezaie P, Pontikis CC, Hudson L, Cairns NJ, Lantos PL (2005) Expression of cellular prion protein in the frontal and occipital lobe in Alzheimer’s disease, diffuse Lewy body disease, and in normal brain: an immunohistochemical study. J Histochem Cytochem 53:929–940CrossRefPubMedGoogle Scholar
  73. 73.
    Rijal Upadhaya A, Capetillo-Zarate E, Kosterin I, Abramowski D, Kumar S, Yamaguchi H et al (2012) Dispersible amyloid β-protein oligomers, protofibrils, and fibrils represent diffusible but not soluble aggregates: their role in neurodegeneration in amyloid precursor protein (APP) transgenic mice. Neurobiol Aging 33:2641–2660CrossRefPubMedGoogle Scholar
  74. 74.
    Rijal Upadhaya A, Kosterin I, Kumar S, Von Arnim C, Yamaguchi H, Fändrich M et al (2014) Biochemical stages of amyloid β-peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically-preclinical Alzheimer’s disease. Brain 137:887–903CrossRefPubMedGoogle Scholar
  75. 75.
    Rijal Upadhaya A, Lungrin I, Yamaguchi H, Fändrich M, Thal DR (2012) High-molecular weight Aβ-oligomers and protofibrils are the predominant Aβ-species in the native soluble protein fraction of the AD brain. J Cell Mol Med 16:287–295CrossRefGoogle Scholar
  76. 76.
    Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754CrossRefPubMedGoogle Scholar
  77. 77.
    Salazar SV, Cox TO, Lee S, Brody AH, Chyung AS, Haas LT et al (2019) Alzheimer’s disease risk factor Pyk2 mediates amyloid-beta-induced synaptic dysfunction and loss. J Neurosci 39:758–772CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Salazar SV, Gallardo C, Kaufman AC, Herber CS, Haas LT, Robinson S et al (2017) Conditional deletion of Prnp rescues behavioral and synaptic deficits after disease onset in transgenic Alzheimer’s disease. J Neurosci 37:9207–9221CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M et al (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139:1539–1550CrossRefPubMedGoogle Scholar
  80. 80.
    Senthivinayagam S, McIntosh AL, Moon KC, Atshaves BP (2013) Plin2 inhibits cellular glucose uptake through interactions with SNAP23, a SNARE complex protein. PLoS One 8:e73696CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sepulcre J, Grothe MJ, d’Oleire Uquillas F, Ortiz-Teran L, Diez I, Yang HS et al (2018) Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med 24:1910–1918CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Smith LM, Zhu R, Strittmatter SM (2018) Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer’s model. Neuropharmacology 130:54–61CrossRefPubMedGoogle Scholar
  83. 83.
    Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000CrossRefPubMedGoogle Scholar
  84. 84.
    Spires-Jones TL, Attems J, Thal DR (2017) Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 134:187–205CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292CrossRefPubMedGoogle Scholar
  86. 86.
    Takahashi RH, Tobiume M, Sato Y, Sata T, Gouras GK, Takahashi H (2011) Accumulation of cellular prion protein within dystrophic neurites of amyloid plaques in the Alzheimer’s disease brain. Neuropathology 31:208–214CrossRefPubMedGoogle Scholar
  87. 87.
    Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowl Environ 2006:re1CrossRefGoogle Scholar
  88. 88.
    Thal DR, Ghebremedhin E, Rüb U, Yamaguchi H, Del Tredici K, Braak H (2002) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61:282–293CrossRefPubMedGoogle Scholar
  89. 89.
    Thal DR, Holzer M, Rüb U, Waldmann G, Gunzel S, Zedlick D et al (2000) Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Exp Neurol 163:98–110CrossRefPubMedGoogle Scholar
  90. 90.
    Thal DR, Larionov S, Abramowski D, Wiederhold KH, Van Dooren T, Yamaguchi H et al (2007) Occurrence and co-localization of amyloid beta-protein and apolipoprotein E in perivascular drainage channels of wild-type and APP-transgenic mice. Neurobiol Aging 28:1221–1230CrossRefPubMedGoogle Scholar
  91. 91.
    Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Abeta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K et al (2000) Sequence of Abeta-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748CrossRefPubMedGoogle Scholar
  93. 93.
    Tousseyn T, Bajsarowicz K, Sanchez H, Gheyara A, Oehler A, Geschwind M et al (2015) Prion disease induces Alzheimer disease-like neuropathologic changes. J Neuropathol Exp Neurol 74:873–888CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A et al (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15:1227–1235CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    van Eersel J, Stevens CH, Przybyla M, Gladbach A, Stefanoska K, Chan CK et al (2015) Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 41:906–925CrossRefPubMedGoogle Scholar
  96. 96.
    Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjogren M et al (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285:49–52CrossRefPubMedGoogle Scholar
  97. 97.
    Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P, Vanoosthuyse A et al (2016) Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol 131:549–569CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Velayos JL, Irujo A, Cuadrado-Tejedor M, Paternain B, Moleres FJ, Ferrer V (2009) The cellular prion protein and its role in Alzheimer disease. Prion 3:110–117CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Vergara C, Houben S, Suain V, Yilmaz Z, De Decker R, Vanden Dries V et al (2019) Amyloid-beta pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol 137:397–412CrossRefPubMedGoogle Scholar
  100. 100.
    Vergara C, Ordonez-Gutierrez L, Wandosell F, Ferrer I, del Rio JA, Gavin R (2015) Role of PrP(C) expression in tau protein levels and phosphorylation in Alzheimer’s disease evolution. Mol Neurobiol 51:1206–1220CrossRefPubMedGoogle Scholar
  101. 101.
    Vincent B, Sunyach C, Orzechowski HD, St George-Hyslop P, Checler F (2009) p53-Dependent transcriptional control of cellular prion by presenilins. J Neurosci 29:6752–6760CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Voigtlander T, Kloppel S, Birner P, Jarius C, Flicker H, Verghese-Nikolakaki S et al (2001) Marked increase of neuronal prion protein immunoreactivity in Alzheimer’s disease and human prion diseases. Acta Neuropathol 101:417–423PubMedGoogle Scholar
  103. 103.
    Wang XF, Dong CF, Zhang J, Wan YZ, Li F, Huang YX et al (2008) Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro. Mol Cell Biochem 310:49–55CrossRefPubMedGoogle Scholar
  104. 104.
    Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T et al (2013) Oligomers, fact or artefact? SDS-PAGE induces dimerization of beta-amyloid in human brain samples. Acta Neuropathol 125:549–564CrossRefPubMedGoogle Scholar
  105. 105.
    Watts JC, Bourkas MEC, Arshad H (2018) The function of the cellular prion protein in health and disease. Acta Neuropathol 135:159–178CrossRefPubMedGoogle Scholar
  106. 106.
    Whitehouse IJ, Jackson C, Turner AJ, Hooper NM (2010) Prion protein is reduced in aging and in sporadic but not in familial Alzheimer’s disease. J Alzheimers Dis 22:1023–1031CrossRefPubMedGoogle Scholar
  107. 107.
    Whitehouse IJ, Miners JS, Glennon EB, Kehoe PG, Love S, Kellett KA et al (2013) Prion protein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity, amyloid-beta levels and Braak stage. PLoS One 8:e59554CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luis Aragão Gomes
    • 1
    • 2
  • Silvia Andrea Hipp
    • 3
    • 4
  • Ajeet Rijal Upadhaya
    • 3
  • Karthikeyan Balakrishnan
    • 3
    • 5
  • Simona Ospitalieri
    • 1
    • 2
  • Marta J. Koper
    • 1
    • 2
    • 6
    • 7
  • Pablo Largo-Barrientos
    • 7
    • 8
  • Valerie Uytterhoeven
    • 7
    • 8
  • Julia Reichwald
    • 9
  • Sabine Rabe
    • 9
  • Rik Vandenberghe
    • 2
    • 10
    • 11
  • Christine A. F. von Arnim
    • 12
    • 13
  • Thomas Tousseyn
    • 14
  • Regina Feederle
    • 15
    • 16
    • 17
  • Camilla Giudici
    • 16
  • Michael Willem
    • 18
  • Matthias Staufenbiel
    • 9
  • Dietmar Rudolf Thal
    • 1
    • 2
    • 3
    • 14
    Email author
  1. 1.Laboratory for Neuropathology, Department of Imaging and PathologyKU-LeuvenLeuvenBelgium
  2. 2.Leuven Brain InstituteKU-LeuvenLeuvenBelgium
  3. 3.Laboratory for Neuropathology, Institute of PathologyUniversity of UlmUlmGermany
  4. 4.Anasthesiology and Intensive MedicineUniversity Hospital of TübingenTübingenGermany
  5. 5.Department of Gene TherapyUniversity of UlmUlmGermany
  6. 6.Laboratory for the Research of Neurodegenerative Diseases, Department of NeurosciencesKU Leuven (University of Leuven)LeuvenBelgium
  7. 7.VIB, Center for Brain and Disease ResearchLeuvenBelgium
  8. 8.Department of NeurosciencesKU-LeuvenLeuvenBelgium
  9. 9.Novartis Institutes for Biomedical SciencesBaselSwitzerland
  10. 10.Experimental Neurology Group, Department of NeurosciencesKU LeuvenLeuvenBelgium
  11. 11.Department of NeurologyUZ-LeuvenLeuvenBelgium
  12. 12.Department of NeurologyUniversity of UlmUlmGermany
  13. 13.Clinic for Neurogeriatrics and Neurological RehabilitationUniversity- und Rehabilitation Hospital Ulm (RKU)UlmGermany
  14. 14.Department of PathologyUZ LeuvenLeuvenBelgium
  15. 15.Institute for Diabetes and Obesity, Monoclonal Antibody Research GroupHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)MunichGermany
  16. 16.German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
  17. 17.Munich Cluster for Systems Neurology (SyNergy)MunichGermany
  18. 18.Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of MedicineLudwig-Maximilians-University MunichMunichGermany

Personalised recommendations