Advertisement

Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer’s disease patient brain samples

  • Stefan ProkopEmail author
  • Kelly R. Miller
  • Sergio R. Labra
  • Rose M. Pitkin
  • Kevt’her Hoxha
  • Sneha Narasimhan
  • Lakshmi Changolkar
  • Alyssa Rosenbloom
  • Virginia M.-Y. Lee
  • John Q. TrojanowskiEmail author
Original Paper

Abstract

Identification of multiple immune-related genetic risk factors for sporadic AD (sAD) have put the immune system center stage in mechanisms underlying this disorder. Comprehensive analysis of microglia in different stages of AD in human brains revealed microglia activation to follow the progression of AD neuropathological changes and requiring the co-occurrence of beta-Amyloid (Aβ) and tau pathology. Carriers of AD-associated risk variants in TREM2 (Triggering receptor expressed on myeloid cells 2) showed a reduction of plaque-associated microglia and a substantial increase in dystrophic neurites and overall pathological tau compared with age and disease stage matched AD patients without TREM2 risk variants. These findings were substantiated by digital spatial profiling of the plaque microenvironment and targeted gene expression profiling on the NanoString nCounter system, which revealed striking brain region dependent differences in immune response patterns within individual cases. The demonstration of profound brain region and risk-variant specific differences in immune activation in human AD brains impacts the applicability of immune-therapeutic approaches for sAD and related neurodegenerative diseases.

Keywords

Microglia Alzheimer’s disease Neuropathology TREM2 

Notes

Acknowledgements

This work was supported by a supplement to NIH/NIA P30 AG010124 (J.Q.T.) to S.P. We thank Teresa Schuck, John Robinson and Catherine Casalnova for excellent technical support.

Author contributions

SP, KRM, JQT, and VYML conceived the study and co-wrote the manuscript. SP and KRM supervised and performed experiments. SN, LC, KH, SRL, and RMP performed biochemical experiments. RMP, SRL, KH, SP, and KRM performed histological experiments. SP and KRM performed gene expression analysis and Nanostring nCounter experiments. AR performed GeoMx analysis. SP and KRM performed microglia analysis. SP performed digital image analysis. SP and JQT quantified and confirmed neuropathological changes. JQT and VYML supervised the study.

Compliance with ethical standards

Conflict of interest

K.R.M. and A.R. are employees of Nanonstring.

Supplementary material

401_2019_2048_MOESM1_ESM.pdf (11.2 mb)
Supplementary material 1 (PDF 11452 kb)

References

  1. 1.
    Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344.  https://doi.org/10.1056/NEJMra0909142 CrossRefGoogle Scholar
  2. 2.
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11.  https://doi.org/10.1007/s00401-011-0910-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Prokop S, Miller KR, Heppner FL (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126:461–477.  https://doi.org/10.1007/s00401-013-1182-x CrossRefPubMedGoogle Scholar
  4. 4.
    Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C et al (2018) Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141:2181–2193.  https://doi.org/10.1093/brain/awy146 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR et al (2017) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20:1162–1171.  https://doi.org/10.1038/nn.4597 CrossRefGoogle Scholar
  6. 6.
    Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E et al (2017) An environment-dependent transcriptional network specifies human microglia identity. Science 80-(356):eaal3222.  https://doi.org/10.1126/science.aal3222 CrossRefGoogle Scholar
  7. 7.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127.  https://doi.org/10.1056/NEJMoa1211851 CrossRefGoogle Scholar
  8. 8.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116.  https://doi.org/10.1056/NEJMoa1211103 CrossRefGoogle Scholar
  9. 9.
    Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49:1373–1384.  https://doi.org/10.1038/ng.3916 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D et al (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42:781–785.  https://doi.org/10.1038/ng.642 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Broce I, Karch CM, Wen N, Fan CC, Wang Y, Hong Tan C et al (2018) Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLoS Med 15:e1002487.  https://doi.org/10.1371/journal.pmed.1002487 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Le Ber I, De Septenville A, Guerreiro R, Bras J, Camuzat A, Caroppo P et al (2014) Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol Aging 35:2419.e23–2419.e25.  https://doi.org/10.1016/j.neurobiolaging.2014.04.010 CrossRefGoogle Scholar
  13. 13.
    Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J et al (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci 114:11524–11529.  https://doi.org/10.1073/pnas.1710311114 CrossRefPubMedGoogle Scholar
  14. 14.
    Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML et al (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212:287–295.  https://doi.org/10.1084/jem.20142322 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ulrich JD, Finn M, Wang Y, Shen A, Mahan TE, Jiang H et al (2014) Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener 9:20.  https://doi.org/10.1186/1750-1326-9-20 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM et al (2016) TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 92:252–264.  https://doi.org/10.1016/j.neuron.2016.09.016 CrossRefPubMedGoogle Scholar
  17. 17.
    Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT et al (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667–675.  https://doi.org/10.1084/jem.20151948 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566.e9–581.e9.  https://doi.org/10.1016/j.immuni.2017.08.008 CrossRefGoogle Scholar
  19. 19.
    Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86.  https://doi.org/10.1126/scitranslmed.3009093 CrossRefPubMedGoogle Scholar
  20. 20.
    Kober DL, Alexander-Brett JM, Karch CM, Cruchaga C, Colonna M, Holtzman MJ et al (2016) Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. Elife.  https://doi.org/10.7554/elife.20391 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Song W, Hooli B, Mullin K, Jin SC, Cella M, Ulland TK et al (2017) Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. Alzheimer’s Dement 13:381–387.  https://doi.org/10.1016/j.jalz.2016.07.004 CrossRefGoogle Scholar
  22. 22.
    Song WM, Joshita S, Zhou Y, Ulland TK, Gilfillan S, Colonna M (2018) Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J Exp Med 215:745–760.  https://doi.org/10.1084/jem.20171529 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brettschneider J, Del Tredici K, Lee VM-Y, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120.  https://doi.org/10.1038/nrn3887 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Toledo JB, Van Deerlin VM, Lee EB, Suh E, Baek Y, Robinson JL et al (2014) A platform for discovery: the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Alzheimer’s Dement 10:477–484CrossRefGoogle Scholar
  25. 25.
    Guo JL, Narasimhan S, Changolkar L, He Z, Stieber A, Zhang B et al (2016) Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J Exp Med 213:2635–2654.  https://doi.org/10.1084/jem.20160833 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Merritt CR, Ong GT, Church S, Barker K, Geiss G, Hoang M et al (2019) High multiplex, digital spatial profiling of proteins and RNA in fixed tissue using genomic detection methods. bioRxiv.  https://doi.org/10.1101/559021 CrossRefGoogle Scholar
  27. 27.
    Xie SX, Baek Y, Grossman M, Arnold SE, Karlawish J, Siderowf A et al (2011) Building an integrated neurodegenerative disease database at an academic health center. Alzheimers Dement 7:e84–e93.  https://doi.org/10.1016/j.jalz.2010.08.233 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9CrossRefPubMedGoogle Scholar
  29. 29.
    Streit WJ, Braak H, Xue Q-S, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118:475–485.  https://doi.org/10.1007/s00401-009-0556-6 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tischer J, Krueger M, Mueller W, Staszewski O, Prinz M, Streit WJ et al (2016) Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer’s disease. Glia 64:1562–1572.  https://doi.org/10.1002/glia.23024 CrossRefPubMedGoogle Scholar
  31. 31.
    Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefGoogle Scholar
  32. 32.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404.  https://doi.org/10.1007/s00401-006-0127-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefGoogle Scholar
  34. 34.
    Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255Google Scholar
  35. 35.
    Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766.  https://doi.org/10.1007/s00401-014-1349-0 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang J, Dickson DW, Trojanowski JQ, Lee VM-Y (1999) The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 158:328–337.  https://doi.org/10.1006/exnr.1999.7085 CrossRefPubMedGoogle Scholar
  37. 37.
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487.  https://doi.org/10.1038/nature21029 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–527.  https://doi.org/10.1038/nature24016 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276.e17–1290.e17.  https://doi.org/10.1016/j.cell.2017.05.018 CrossRefGoogle Scholar
  40. 40.
    Streit WJ, Braak H, Del Tredici K, Leyh J, Lier J, Khoshbouei H et al (2018) Microglial activation occurs late during preclinical Alzheimer’s disease. Glia 66:2550–2562.  https://doi.org/10.1002/glia.23510 CrossRefPubMedGoogle Scholar
  41. 41.
    De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615.  https://doi.org/10.1016/j.cell.2015.12.056 CrossRefPubMedGoogle Scholar
  42. 42.
    Sanchez-Mejias E, Navarro V, Jimenez S, Sanchez-Mico M, Sanchez-Varo R, Nuñez-Diaz C et al (2016) Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol 132:897–916.  https://doi.org/10.1007/s00401-016-1630-5 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lee CYD, Daggett A, Gu X, Jiang L-L, Langfelder P, Li X et al (2018) Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron 97:1032.e5–1048.e5.  https://doi.org/10.1016/j.neuron.2018.02.002 CrossRefGoogle Scholar
  44. 44.
    Li C, Zhao B, Lin C, Gong Z, An X (2018) TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int.  https://doi.org/10.1002/cbin.10975 CrossRefPubMedGoogle Scholar
  45. 45.
    Linnartz-Gerlach B, Bodea L, Klaus C, Ginolhac A, Halder R, Sinkkonen L et al (2018) TREM2 triggers microglial density and age-related neuronal loss. Glia.  https://doi.org/10.1002/glia.23563 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, Gilfillan S et al (2015) TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest 125:2161–2170.  https://doi.org/10.1172/JCI77983 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ulland TK, Song WM, Huang SC-C, Ulrich JD, Sergushichev A, Beatty WL et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170:649.e13–663.e13.  https://doi.org/10.1016/j.cell.2017.07.023 CrossRefGoogle Scholar
  48. 48.
    Zheng H, Cheng B, Li Y, Li X, Chen X, Zhang Y (2018) TREM2 in Alzheimer’s disease: microglial survival and energy metabolism. Front Aging Neurosci 10:395.  https://doi.org/10.3389/fnagi.2018.00395 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582.  https://doi.org/10.1038/s41586-018-0543-y CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jay TR, Hirsch AM, Broihier ML, Miller CM, Neilson LE, Ransohoff RM et al (2017) Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J Neurosci 37:637–647.  https://doi.org/10.1523/JNEUROSCI.2110-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sayed FA, Telpoukhovskaia M, Kodama L, Li Y, Zhou Y, Le D et al (2018) Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy. Proc Natl Acad Sci 115:10172–10177.  https://doi.org/10.1073/pnas.1811411115 CrossRefGoogle Scholar
  52. 52.
    Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW et al (2013) TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener.  https://doi.org/10.1186/1750-1326-8-19 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Parhizkar S, Arzberger T, Brendel M, Kleinberger G, Deussing M, Focke C et al (2019) Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci 22:191–204.  https://doi.org/10.1038/s41593-018-0296-9 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Guerreiro R, Orme T, Naj AC, Kuzma AB, Schellenberg GD, Bras J (2019) Is APOE ε4 required for Alzheimer’s disease to develop in TREM2 p. R47H variant carriers? Neuropathol Appl Neurobiol 45:187–189.  https://doi.org/10.1111/nan.12517 CrossRefPubMedGoogle Scholar
  55. 55.
    De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, Cimbro R et al (2017) Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95:341.e6–356.e6.  https://doi.org/10.1016/j.neuron.2017.06.020 CrossRefGoogle Scholar
  56. 56.
    Böttcher C, Schlickeiser S, Sneeboer MAM, Kunkel D, Knop A, Paza E et al (2019) Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 22:78–90.  https://doi.org/10.1038/s41593-018-0290-2 CrossRefPubMedGoogle Scholar
  57. 57.
    Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP et al (2016) Microglial brain region—dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516.  https://doi.org/10.1038/nn.4222 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:253.e6–271.e6.  https://doi.org/10.1016/j.immuni.2018.11.004 CrossRefGoogle Scholar
  59. 59.
    Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21:366–380.  https://doi.org/10.1016/j.celrep.2017.09.039 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L et al (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177:3520–3524CrossRefPubMedGoogle Scholar
  61. 61.
    Montine TJ, Monsell SE, Beach TG, Bigio EH, Bu Y, Cairns NJ et al (2016) Multisite assessment of NIA-AA guidelines for the neuropathologic evaluation of Alzheimer’s disease. Alzheimer’s Dement 12:164–169.  https://doi.org/10.1016/j.jalz.2015.07.492 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory Medicine, AD Center Core (ADCC), Center for Neurodegenerative Disease ResearchUniversity of Pennsylvania (PENN) School of MedicinePhiladelphiaUSA
  2. 2.Department of PathologyUniversity of FloridaGainesvilleUSA
  3. 3.Center for Translational Research in Neurodegenerative Disease, University of FloridaGainesvilleUSA
  4. 4.Fixel Institute for Neurological Diseases, University of FloridaGainesvilleUSA
  5. 5.NanoString TechnologiesSeattleUSA

Personalised recommendations