Advertisement

Neurotoxicity of polychlorinated biphenyls and related organohalogens

  • Isaac N. PessahEmail author
  • Pamela J. Lein
  • Richard F. Seegal
  • Sharon K. Sagiv
Review

Abstract

Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many “legacy” compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.

Notes

Acknowledgements

Supported by the National institute of Environmental Health Sciences (R01 ES014901, P01 ES011269, R01 ES030318 and P42 ES04699).

References

  1. 1.
    Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS (2017) Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem Rev 117:5619–5674.  https://doi.org/10.1021/acs.chemrev.6b00571 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aggad D, Vérièpe J, Tauffenberger A, Parker JA (2014) TDP-43 toxicity proceeds via calcium dysregulation and necrosis in aging Caenorhabditis elegans motor neurons. J Neurosci 34:12093–12103.  https://doi.org/10.1523/JNEUROSCI.2495-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alonso MB, Maruya KA, Dodder NG, Lailson-Brito J Jr, Azevedo A, Santos-Neto E et al (2017) Nontargeted screening of halogenated organic compounds in bottlenose dolphins (Tursiops truncatus) from Rio de Janeiro, Brazil. Environ Sci Technol 51:1176–1185.  https://doi.org/10.1021/acs.est.6b04186 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ash PEA, Stanford EA, Al Abdulatif A, Ramirez-Cardenas A, Ballance HI, Boudeau S et al (2017) Dioxins and related environmental contaminants increase TDP-43 levels. Mol Neurodegener 12:35.  https://doi.org/10.1186/s13024-017-0177-9 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bell MR (2014) Endocrine-disrupting actions of PCBs on brain development and social and reproductive behaviors. Curr Opin Pharmacol 19:134–144.  https://doi.org/10.1016/j.coph.2014.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Berghuis SA, Bos AF, Sauer PJ, Roze E (2015) Developmental neurotoxicity of persistent organic pollutants: an update on childhood outcome. Arch Toxicol 89:687–709.  https://doi.org/10.1007/s00204-015-1463-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412.  https://doi.org/10.1016/j.ceca.2006.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8.  https://doi.org/10.1016/S0026-0495(00)80077-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Beyer A, Biziuk M (2009) Environmental fate and global distribution of polychlorinated biphenyls. Rev Environ Contam Toxicol 201:137–158.  https://doi.org/10.1007/978-1-4419-0032-6_5 CrossRefPubMedGoogle Scholar
  10. 10.
    Blaak E (2001) Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4:499–502CrossRefPubMedGoogle Scholar
  11. 11.
    Bock KW (2016) Toward elucidation of dioxin-mediated chloracne and Ah receptor functions. Biochem Pharmacol 112:1–5.  https://doi.org/10.1016/j.bcp.2016.06.015 CrossRefPubMedGoogle Scholar
  12. 12.
    Boucher O, Muckle G, Bastien CH (2009) Prenatal exposure to polychlorinated biphenyls: a neuropsychologic analysis. Environ Health Perspect 117:7–16CrossRefPubMedGoogle Scholar
  13. 13.
    Boucher O, Burden MJ, Muckle G, Saint-Amour D, Ayotte P, Dewailly E et al (2012) Response inhibition and error monitoring during a visual go/no-go task in inuit children exposed to lead, polychlorinated biphenyls, and methylmercury. Environ Health Perspect 120:608–615.  https://doi.org/10.1289/ehp.1103828 CrossRefPubMedGoogle Scholar
  14. 14.
    Boucher O, Jacobson SW, Plusquellec P, Dewailly E, Ayotte P et al (2012) Prenatal methylmercury, postnatal lead exposure, and evidence of attention deficit/hyperactivity disorder among Inuit children in Arctic Quebec. Environ Health Perspect 120:1456–1461.  https://doi.org/10.1289/ehp.1204976 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Boucher O, Muckle G, Jacobson JL, Carter RC, Kaplan-Estrin M, Ayotte P et al (2014) Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: results from the Environmental Contaminants and Child Development Study in Nunavik. Environ Health Perspect 122:310–316.  https://doi.org/10.1289/ehp.1206323 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjodin A et al (2014) Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122:513–520.  https://doi.org/10.1289/ehp.1307261 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brini M, Cali T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71:2787–2814.  https://doi.org/10.1007/s00018-013-1550-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Briston T, Hicks AR (2018) Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochem Soc Trans 46:829–842.  https://doi.org/10.1042/BST20180025 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Brouwer A, Longnecker MP, Bimbaum LS, Cogliano J, Kostyniak P, Moore J, Schantz S, Winneke G (1999) Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect 107(Suppl 4):639–649.  https://doi.org/10.1289/ehp.99107s4639 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brown KW, Minegishi T, Cummiskey CC, Fragala MA, Hartman R, MacIntosh DL (2016) PCB remediation in schools: a review. Environ Sci Pollut Res Int 23:1986–1997.  https://doi.org/10.1007/s11356-015-4689-y CrossRefPubMedGoogle Scholar
  21. 21.
    Brown AS, Cheslack-Postava K, Rantakokko P, Kiviranta H, Hinkka-Yli-Salomäki S, McKeague IW et al (2018) Association of maternal insecticide levels with autism in offspring from a national birth cohort. Am J Psychiatry 5:5.  https://doi.org/10.1176/appi.ajp.2018.17101129 CrossRefGoogle Scholar
  22. 22.
    Caudle WM, Richardson JR, Delea KC, Guillot TS, Wang M, Pennell KD et al (2006) Polychlorinated biphenyl-induced reduction of dopamine transporter expression as a precursor to Parkinson’s disease-associated dopamine toxicity. Toxicol Sci 92:490–499.  https://doi.org/10.1093/toxsci/kfl018 CrossRefPubMedGoogle Scholar
  23. 23.
    Carmody RJ, Cotter TG (2001) Signaling apoptosis: a radical approach. Redox Rep 6:77–90.  https://doi.org/10.1179/135100001101536085 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen H, Streifel KM, Singh V, Yang D, Mangini L, Wulff H et al (2017) From the Cover: BDE-47 and BDE-49 inhibit axonal growth in primary rat hippocampal neuron-glia co-cultures via ryanodine receptor-dependent mechanisms. Toxicol Sci 156:375–386.  https://doi.org/10.1093/toxsci/kfw259 CrossRefPubMedGoogle Scholar
  25. 25.
    Chen YC, Guo YL, Hsu CC (1992) Cognitive development of children prenatally exposed to polychlorinated biphenyls (Yu-Cheng children) and their siblings. J Formos Med Assoc 91:704–707PubMedGoogle Scholar
  26. 26.
    Chen YC, Yu ML, Rogan WJ, Gladen BC, Hsu CC (1994) A 6-year follow-up of behavior and activity disorders in the Taiwan Yu-cheng children. Am J Public Health 84:415–421CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cheng N, Alshammari F, Hughes E, Khanbabaei M, Rho JM (2017) Dendritic overgrowth and elevated ERK signaling during neonatal development in a mouse model of autism. PLoS One 12(6):e0179409.  https://doi.org/10.1371/journal.pone.0179409 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Choksi NY, Kodavanti PR, Tilson HA, Booth RG (1997) Effects of polychlorinated biphenyls (PCBs) on brain tyrosine hydroxylase activity and dopamine synthesis in rats. Fundam Appl Toxicol 39:76–80.  https://doi.org/10.1006/faat.1997.2351 CrossRefPubMedGoogle Scholar
  29. 29.
    Chou SM, Miike T, Payne WM, Davis GJ (1979) Neuropathology of “spinning syndrome” induced by prenatal intoxication with a PCB in mice. Ann N Y Acad Sci 320:373–395.  https://doi.org/10.1111/j.1749-6632.1979.tb56619.x CrossRefPubMedGoogle Scholar
  30. 30.
    Corrigan FM, Murray L, Wyatt CL, Shore RF (1998) Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease. Exp Neurol 150:339–342.  https://doi.org/10.1006/exnr.1998.6776 CrossRefPubMedGoogle Scholar
  31. 31.
    Costa LG, Pellacani C, Dao K, Kavanagh TJ, Roque PJ (2015) The brominated flame retardant BDE-47 causes oxidative stress and apoptotic cell death in vitro and in vivo in mice. Neurotoxicology 48:68–76.  https://doi.org/10.1016/j.neuro.2015.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Costa LG, Tagliaferri S, Roqué PJ, Pellacani C (2016) Role of glutamate receptors in tetrabrominated diphenyl ether (BDE-47) neurotoxicity in mouse cerebellar granule neurons. Toxicol Lett 241:159–166.  https://doi.org/10.1016/j.toxlet.2015.11.026 CrossRefPubMedGoogle Scholar
  33. 33.
    Daniels JL, Longnecker MP, Klebanoff MA, Gray KA, Brock JW, Zhou H et al (2003) Prenatal exposure to low-level polychlorinated biphenyls in relation to mental and motor development at 8 months. Am J Epidemiol 157:485–492.  https://doi.org/10.1093/aje/kwg010 CrossRefPubMedGoogle Scholar
  34. 34.
    Dingemans MM, Kock M, van den Berg M (2016) Mechanisms of action point towards combined PBDE/NDL-PCB risk assessment. Toxicol Sci 153:215–224.  https://doi.org/10.1093/toxsci/kfw129 CrossRefPubMedGoogle Scholar
  35. 35.
    Do Y, Lee DK (2012) Effects of polychlorinated biphenyls on the development of neuronal cells in growth period; structure–activity relationship. Exp Neurobiol 21:30–36.  https://doi.org/10.5607/en.2012.21.1.30 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Domingo JL, Bocio A (2007) Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: a literature review. Environ Int 33:397–405.  https://doi.org/10.1016/j.envint.2006.12.004 CrossRefPubMedGoogle Scholar
  37. 37.
    Dreser A, Vollrath JT, Sechi A, Johann S, Roos A, Yamoah A et al (2017) The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death Differ 24:1655–1671.  https://doi.org/10.1038/cdd.2017.88 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dunaway K, Islam MS, Lopez SJ, Coulson RL, Ciernia AV, Chu RG et al (2016) Cumulative impact of large chromosomal duplications and polychlorinated biphenyl exposure on DNA methylation, chromatin, and expression of autism candidate genes. Cell Rep 17:3035–3048CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Elnar AA, Desor F, Legay S, Nemos C, Yen FT, Oster T et al (2016) No evidence for oxidative stress in the cerebellar tissues or cells of juvenile male mice exposed via lactation to the 6 non-dioxin-like PCBs at levels below the regulatory safe limits for humans. Toxicol Lett 245:7–14.  https://doi.org/10.1016/j.toxlet.2015.12.003 CrossRefPubMedGoogle Scholar
  40. 40.
    Ethier AA, Muckle G, Bastien C, Dewailly É, Ayotte P, Arfken C et al (2012) Saint-Amour D (2012) Effects of environmental contaminant exposure on visual brain development: a prospective electrophysiological study in school-aged children. Neurotoxicology 33:1075–1085.  https://doi.org/10.1016/j.neuro.2012.05.010 CrossRefPubMedGoogle Scholar
  41. 41.
    Eubig PA, Aguiar A, Schantz SL (2010) Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. Environ Health Perspect 118:1654–1667.  https://doi.org/10.1289/ehp.0901852 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Evangelista de Duffard AM, Duffard R (1996) Behavioral toxicology, risk assessment, and chlorinated hydrocarbons. Environ Health Perspect 104(Suppl 2):353–360.  https://doi.org/10.1289/ehp.96104s2353 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Faroon O, Ruiz P (2016) Polychlorinated biphenyls: new evidence from the last decade. Tox Ind Health 32:1825–1847.  https://doi.org/10.1177/0748233715587849 CrossRefGoogle Scholar
  44. 44.
    Feng W, Barrientos GC, Cherednichenko G, Yang T, Padilla IT, Truong K et al (2011) Functional and biochemical properties of ryanodine receptor type 1 channels from heterozygous R163C malignant hyperthermia-susceptible mice. Mol Pharmacol 79:420–431.  https://doi.org/10.1124/mol.110.067959 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Feng W, Liu G, Allen PD, Pessah IN (2000) Transmembrane redox sensor of ryanodine receptor complex. J Biol Chem 275:35902–35907.  https://doi.org/10.1074/jbc.C000523200 CrossRefPubMedGoogle Scholar
  46. 46.
    Feng W, Liu G, Xia R, Abramson JJ, Pessah IN (1999) Site-selective modification of hyperreactive cysteines of ryanodine receptor complex by quinones. Mol Pharmacol 55:821–831PubMedGoogle Scholar
  47. 47.
    Feng W, Zheng J, Robin G, Dong Y, Ichikawa M, Inoue Y et al (2017) Enantioselectivity of 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) atropisomers toward ryanodine receptors (RyRs) and their influences on hippocampal neuronal networks. Environ Sci Technol 51:14406–14416.  https://doi.org/10.1021/acs.est.7b04446 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fimm B, Sturm W, Esser A, Schettgen T, Willmes K (2017) Neuropsychological effects of occupational exposure to polychlorinated biphenyls. Neurotoxicology 63:106–119.  https://doi.org/10.1016/j.neuro.2017.09.011 CrossRefPubMedGoogle Scholar
  49. 49.
    Fitzgerald EF, Belanger EE, Gomez MI, Cayo M, McCaffrey RJ et al (2008) Polychlorinated biphenyl exposure and neuropsychological status among older residents of upper Hudson River communities. Environ Health Perspect 116:209–215.  https://doi.org/10.1289/ehp.10432 CrossRefPubMedGoogle Scholar
  50. 50.
    Fitzgerald EF, Belanger EE, Gomez MI, Hwang SA, Jansing RL, Hicks HE (2007) Environmental exposures to polychlorinated biphenyls (PCBs) among older residents of upper Hudson River communities. Environ Res 104:352–360.  https://doi.org/10.1016/j.envres.2007.01.010 CrossRefPubMedGoogle Scholar
  51. 51.
    Forns J, Torrent M, Garcia-Esteban R, Grellier J, Gascon M, Julvez J et al (2012) Prenatal exposure to polychlorinated biphenyls and child neuropsychological development in 4-year-olds: an analysis per congener and specific cognitive domain. Sci Total Environ 432:338–343.  https://doi.org/10.1016/j.scitotenv.2012.06.012 CrossRefPubMedGoogle Scholar
  52. 52.
    Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD, Murk AJ (2011) Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol In Vitro 25:257–266.  https://doi.org/10.1016/j.tiv.2010.08.013 CrossRefPubMedGoogle Scholar
  53. 53.
    Fritsch EB, Pessah IN (2013) Structure–activity relationship of non-coplanar polychlorinated biphenyls toward skeletal muscle ryanodine receptors in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 140–141:204–212.  https://doi.org/10.1016/j.aquatox.2013.06.003 CrossRefPubMedGoogle Scholar
  54. 54.
    Fritsch EB, Stegeman JJ, Goldstone JV, Nacci DE, Champlin D, Jayaraman S et al (2015) Expression and function of ryanodine receptor related pathways in PCB tolerant Atlantic killifish (Fundulus heteroclitus) from New Bedford Harbor, MA, USA. Aquat Toxicol 159:156–166.  https://doi.org/10.1016/j.aquatox.2014.12.017 CrossRefPubMedGoogle Scholar
  55. 55.
    Gaum PM, Esser A, Schettgen T, Gube M, Kraus T, Lang J (2014) Prevalence and incidence rates of mental syndromes after occupational exposure to polychlorinated biphenyls. Int J Hyg Environ Health 217:765–774.  https://doi.org/10.1016/j.ijheh.2014.04.001 CrossRefPubMedGoogle Scholar
  56. 56.
    Gaum PM, Gube M, Schettgen T, Putschögl FM, Kraus T, Fimm B et al (2017) Polychlorinated biphenyls and depression: cross-sectional and longitudinal investigation of a dopamine-related Neurochemical path in the German HELPcB surveillance program. Environ Health 16:106.  https://doi.org/10.1186/s12940-017-0316-3 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gilbert ME, Mundy WR, Crofton KM (2000) Spatial learning and long-term potentiation in the dentate gyrus of the hippocampus in animals developmentally exposed to Aroclor 1254. Toxicol Sci 57:102–111.  https://doi.org/10.1093/toxsci/57.1.102 CrossRefPubMedGoogle Scholar
  58. 58.
    Gladen BC, Rogan WJ (1991) Effects of perinatal polychlorinated biphenyls and dichlorodiphenyl dichloroethene on later development. J Pediatr 119:58–63.  https://doi.org/10.1016/S0022-3476(05)81039-X CrossRefPubMedGoogle Scholar
  59. 59.
    Gladen BC, Rogan WJ, Hardy P, Thullen J, Tingelstad J, Tully M (1988) Development after exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene transplacentally and through human milk. J Pediatr 113:991–995.  https://doi.org/10.1016/S0022-3476(88)80569-9 CrossRefPubMedGoogle Scholar
  60. 60.
    Golden CE, Buxbaum JD, De Rubeis S (2018) Disrupted circuits in mouse models of autism spectrum disorder and intellectual disability. Curr Opin Neurobiol 48:106–112.  https://doi.org/10.1016/j.conb.2017.11.006 CrossRefPubMedGoogle Scholar
  61. 61.
    Goldey ES, Crofton KM (1998) Thyroxine replacement attenuates hypothyroxinemia, hearing loss, and motor deficits following developmental exposure to Aroclor 1254 in rats. Toxicol Sci 45:94–105.  https://doi.org/10.1006/toxs.1998.2495 CrossRefPubMedGoogle Scholar
  62. 62.
    Goldey ES, Kehn LS, Lau C, Rehnberg GL, Crofton KM (1995) Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol 135:77–88.  https://doi.org/10.1006/taap.1995.1210 CrossRefPubMedGoogle Scholar
  63. 63.
    Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13:330–338.  https://doi.org/10.1016/S1474-4422(14)70121-8 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Grandjean P, Weihe P, Burse VW, Needham LL, Storr-Hansen E, Heinzow B et al (2001) Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants. Neurotoxicol Teratol 23:305–317.  https://doi.org/10.1016/S0892-0362(01)00155-6 CrossRefPubMedGoogle Scholar
  65. 65.
    Granillo L, Sethi S, Keil KP, Lin Y, Ozonoff S, Iosif A-M et al (2019) Polychlorinated biphenyls influence on autism spectrum disorder risk in the MARBLES cohort. Env Health Persp (accepted for publication) Google Scholar
  66. 66.
    Gray KA, Klebanoff MA, Brock JW, Zhou H, Darden R, Needham L et al (2005) In utero exposure to background levels of polychlorinated biphenyls and cognitive functioning among school-age children. Am J Epidemiol 162:17–26.  https://doi.org/10.1093/aje/kwi158 CrossRefPubMedGoogle Scholar
  67. 67.
    Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC et al (2015) Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol 45:245–272.  https://doi.org/10.3109/10408444.2014.999365 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hatcher-Martin JM, Gearing M, Steenland K, Levey AI, Miller GW, Pennell KD (2012) Association between polychlorinated biphenyls and Parkinson’s disease neuropathology. Neurotoxicology 33:1298–1304.  https://doi.org/10.1016/j.neuro.2012.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hersi M, Irvine B, Gupta P, Gomes J, Birkett N, Krewski D (2017) Risk factors associated with the onset and progression of Alzheimer’s disease: A systematic review of the evidence. Neurotoxicology. 61:143–187.  https://doi.org/10.1016/j.neuro.2017.03.006 CrossRefPubMedGoogle Scholar
  70. 70.
    Hertz-Picciotto I, Schmidt RJ, Krakowiak P (2018) Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res 11:554–586.  https://doi.org/10.1002/aur.1938 CrossRefPubMedGoogle Scholar
  71. 71.
    Holland EB, Feng W, Zheng J, Dong Y, Li X, Lehmler HJ et al (2017) An Extended Structure–activity relationship of nondioxin-like PCBs evaluates and supports modeling predictions and identifies picomolar potency of PCB 202 towards ryanodine receptors. Toxicol Sci 155:170–181.  https://doi.org/10.1093/toxsci/kfw189 CrossRefPubMedGoogle Scholar
  72. 72.
    Holland EB, Goldstone JV, Pessah IN, Whitehead A, Reid NM, Karchner SI et al (2017) Ryanodine receptor and FK506 binding protein 1 in the Atlantic killifish (Fundulus heteroclitus): a phylogenetic and population-based comparison. Aquat Toxicol 192:105–115.  https://doi.org/10.1016/j.aquatox.2017.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Horton MK, Margolis AE, Tang C, Wright R (2014) Neuroimaging is a novel tool to understand the impact of environmental chemicals on neurodevelopment. Curr Opin Pediatr 26:230–236.  https://doi.org/10.1097/MOP.0000000000000074 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Howard AS, Fitzpatrick R, Pessah I, Kostyniak P, Lein PJ (2003) Polychlorinated biphenyls induce caspase-dependent cell death in cultured embryonic rat hippocampal but not cortical neurons via activation of the ryanodine receptor. Toxicol Appl Pharmacol 190:72–86.  https://doi.org/10.1016/S0041-008X(03)00156-X CrossRefPubMedGoogle Scholar
  75. 75.
    Huang L, Xue Y, Feng D, Yang R, Nie T, Zhu G et al (2017) Blockade of RyRs in the ER attenuates 6-OHDA-induced calcium overload, cellular hypo-excitability and apoptosis in dopaminergic neurons. Front Cell Neurosci 3(11):52.  https://doi.org/10.3389/fncel.2017.00052 CrossRefGoogle Scholar
  76. 76.
    Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94.  https://doi.org/10.1016/j.brainres.2009.09.120 CrossRefPubMedGoogle Scholar
  77. 77.
    Inglefield JR, Mundy WR, Shafer TJ (2001) Inositol 1,4,5-triphosphate receptor-sensitive Ca(2 +) release, store-operated Ca(2 +) entry, and cAMP responsive element binding protein phosphorylation in developing cortical cells following exposure to polychlorinated biphenyls. J Pharmacol Exp Ther 297:762–73. http://jpet.aspetjournals.org/content/297/2/762.long
  78. 78.
    Inglefield JR, Shafer TJ (2000) Polychlorinated biphenyl-stimulation of Ca(2 +) oscillations in developing neocortical cells: a role for excitatory transmitters and L-type voltage-sensitive Ca(2 +) channels. J Pharmacol Exp Ther 295:105–13. http://jpet.aspetjournals.org/content/295/1/105
  79. 79.
    Irwin SA, Patel B, Idupulapati M, Jb Harris, Ra Crisostomo, Bp Larsen et al (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98:161–167.  https://doi.org/10.1002/1096-8628(20010115)98:2%3C161:AID-AJMG1025%3E3.0.CO;2-B CrossRefPubMedGoogle Scholar
  80. 80.
    Itoh S, Baba T, Yuasa M, Miyashita C, Kobayashi S, Araki A et al (2018) Association of maternal serum concentration of hydroxylated polychlorinated biphenyls with maternal and neonatal thyroid hormones: the Hokkaido birth cohort study. Environ Res 167:583–590.  https://doi.org/10.1016/j.envres.2018.08.027 CrossRefPubMedGoogle Scholar
  81. 81.
    Jacobson JL, Jacobson SW (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med 335:783–789.  https://doi.org/10.1056/NEJM199609123351104 CrossRefPubMedGoogle Scholar
  82. 82.
    Jacobson JL, Jacobson SW (2003) Prenatal exposure to polychlorinated biphenyls and attention at school age. J Pediatr 143:780–788.  https://doi.org/10.1067/S0022-3476(03)00577-8 CrossRefPubMedGoogle Scholar
  83. 83.
    Jacobson JL, Jacobson SW, Humphrey HE (1990) Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol Teratol 12:319–326.  https://doi.org/10.1016/0892-0362(90)90050-M CrossRefPubMedGoogle Scholar
  84. 84.
    Jacobson JL, Jacobson SW, Padgett RJ, Brumitt GA, Billings RL (1992) Effects of prenatal PCB exposure on cognitive processing efficiency and sustained attention. Dev Psychol 28:297–306.  https://doi.org/10.1111/j.1467-8624.1992.tb01656.x CrossRefGoogle Scholar
  85. 85.
    Jawaid S, Kidd GJ, Wang J, Swetlik C, Dutta R, Trapp BD (2018) Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome. Glia 66:789–800.  https://doi.org/10.1002/glia.23284 CrossRefPubMedGoogle Scholar
  86. 86.
    Jawaid A, Khan R, Polymenidou M, Schulz PE (2018) Disease-modifying effects of metabolic perturbations in ALS/FTLD. Mol Neurodegener 13:63.  https://doi.org/10.1186/s13024-018-0294-0 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kang JH, Park IS, Oh WY, Lim HK, Wang SY, Lee SY et al (2004) Inhibition of Aroclor 1254-induced depletion of stored calcium prevents the cell death in catecholaminergic cells. Toxicology 200:93–101.  https://doi.org/10.1016/j.tox.2004.03.001 CrossRefPubMedGoogle Scholar
  88. 88.
    Kato Y, Haraguchi K, Yamazaki T, Ito Y, Miyajima S, Nemoto K et al (2003) Effects of polychlorinated biphenyls, kanechlor-500, on serum thyroid hormone levels in rats and mice. Toxicol Sci 72:235–241.  https://doi.org/10.1093/toxsci/kfg025 CrossRefPubMedGoogle Scholar
  89. 89.
    Kaus A, Sareen D (2015) ALS patient stem cells for unveiling disease signatures of motoneuron susceptibility: perspectives on the deadly mitochondria, ER stress and calcium triad. Front Cell Neurosci 9:448.  https://doi.org/10.3389/fncel.2015.00448 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Keil KP, Sethi S, Wilson MD, Silverman JL, Pessah IN, Lein PJ (2019) Genetic mutations in Ca2+ signaling alter dendrite morphology and social approach in juvenile mice. Genes Brain Behav 12:e12526.  https://doi.org/10.1111/gbb.12526 CrossRefGoogle Scholar
  91. 91.
    Kenet T, Froemke RC, Schreiner CE, Pessah IN, Merzenich MM (2007) Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex. Proc Natl Acad Sci USA 104:7646–7651.  https://doi.org/10.1073/pnas.0701944104 CrossRefPubMedGoogle Scholar
  92. 92.
    Kennedy KA, Sandiford SD, Skerjanc IS, Li SS (2012) Reactive oxygen species and the neuronal fate. Cell Mol Life Sci 69:215–221.  https://doi.org/10.1007/s00018-011-0807-2 CrossRefPubMedGoogle Scholar
  93. 93.
    Khadikar PV, Singh S, Shrivastava A (2002) Novel estimation of lipophilic behaviour of polychlorinated biphenyls. Bioorg Med Chem Lett 12:1125–1128.  https://doi.org/10.1016/S0960-894X(02)00086-0 CrossRefPubMedGoogle Scholar
  94. 94.
    Kilburn KH, Warsaw RH, Shields MG (1989) Neurobehavioral dysfunction in firemen exposed to polychlorinated biphenyls (PCBs): possible improvement after detoxification. Arch Environ Health 44:345–350.  https://doi.org/10.1080/00039896.1989.9935904 CrossRefPubMedGoogle Scholar
  95. 95.
    Kim D, Amy GL, Karanfil T (2015) Disinfection by-product formation during seawater desalination: a review. Water Res 81:343–355.  https://doi.org/10.1016/j.watres.2015.05.0407 CrossRefPubMedGoogle Scholar
  96. 96.
    Kim KH, Bose DD, Ghogha A, Riehl J, Zhang R, Barnhart CD et al (2011) Para- and ortho-substitutions are key determinants of polybrominated diphenyl ether activity toward ryanodine receptors and neurotoxicity. Environ Health Perspect 119:519–526.  https://doi.org/10.1289/ehp.1002728 CrossRefPubMedGoogle Scholar
  97. 97.
    Kim KH, Inan SY, Berman RF, Pessah IN (2009) Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation. Toxicol Appl Pharmacol 237:168–177.  https://doi.org/10.1016/j.taap.2009.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kim KH, Pessah IN (2011) Perinatal exposure to environmental polychlorinated biphenyls sensitizes hippocampus to excitotoxicity ex vivo. Neurotoxicology 32:981–985.  https://doi.org/10.1016/j.neuro.2011.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Kimura E, Kubo KI, Endo T, Nakajima K, Kakeyama M, Tohyama C (2017) Excessive activation of AhR signaling disrupts neuronal migration in the hippocampal CA1 region in the developing mouse. J Toxicol Sci 42:25–30.  https://doi.org/10.2131/jts.42.25 CrossRefPubMedGoogle Scholar
  100. 100.
    Kimura E, Tohyama C (2018) Vocalization as a novel endpoint of atypical attachment behavior in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed infant mice. Arch Toxicol 92:1741–1749.  https://doi.org/10.1007/s00204-018-2176-1 CrossRefPubMedGoogle Scholar
  101. 101.
    Kodavanti PR, Tilson HA (2000) Neurochemical effects of environmental chemicals: in vitro and in vivo correlations on second messenger pathways. Ann N Y Acad Sci 919:97–105.  https://doi.org/10.1111/j.1749-6632.2000.tb06872.x CrossRefPubMedGoogle Scholar
  102. 102.
    Kodavanti PR, Ward TR, Mckinney JD, Tilson HA (1996) Inhibition of microsomal and mitochondrial Ca2+ -sequestration in rat cerebellum by polychlorinated biphenyl mixtures and congeners. Structure–activity relationships. Arch Toxicol 70:150–157.  https://doi.org/10.1007/s002040050254 CrossRefPubMedGoogle Scholar
  103. 103.
    Konur S, Ghosh A (2005) Calcium signaling and the control of dendritic development. Neuron 46:401–405.  https://doi.org/10.1016/j.neuron.2005.04.022 CrossRefPubMedGoogle Scholar
  104. 104.
    Koopman-Esseboom C, Weisglas-Kuperus N, de Ridder MA, Van der Paauw CG, Tuinstra LG, Sauer PJ (1996) Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants’ mental and psychomotor development. Pediatrics 97:700–706. http://pediatrics.aappublications.org/content/97/5/700.info
  105. 105.
    Kreitinger JM, Beamer CA, Shepherd DM (2016) Environmental immunology: lessons learned from exposure to a select panel of immunotoxicants. J Immunol. 196:3217–3225.  https://doi.org/10.4049/jimmunol.1502149 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kumar A, Borgen M, Aluwihare LI, Fenical W (2017) Ozone-activated halogenation of mono- and dimethylbipyrrole in seawater. Environ Sci Technol 51:589–595.  https://doi.org/10.1021/acs.est.6b03601 CrossRefPubMedGoogle Scholar
  107. 107.
    Laden F, Neas LM, Spiegelman D, Hankinson SE, Willett WC, Ireland K et al (1999) Predictors of plasma concentrations of DDE and PCBs in a group of U.S. women. Environ Health Perspect 107:75–81.  https://doi.org/10.1289/ehp.9910775 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Lam J, Lanphear BP, Bellinger D, Axelrad DA, McPartland J, Sutton P et al (2017) Developmental PBDE exposure and IQ/ADHD in childhood: a systematic review and meta-analysis. Environ Health Perspect 125(8):086001.  https://doi.org/10.1289/EHP1632 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L et al (2013) Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol 14:287–288.  https://doi.org/10.1016/S1470-2045(13)70104-9 CrossRefPubMedGoogle Scholar
  110. 110.
    Le Douaron G, Ferrié L, Sepulveda-Diaz JE, Amar M, Harfouche A (2016) New 6-aminoquinoxaline derivatives with neuroprotective effect on dopaminergic neurons in cellular and animal parkinson disease models. J Med Chem 59:6169–6186.  https://doi.org/10.1021/acs.jmedchem.6b00297 CrossRefPubMedGoogle Scholar
  111. 111.
    Lee DW, Notter SA, Thiruchelvam M, Dever DP, Fitzpatrick R, Kostyniak PJ et al (2012) Subchronic polychlorinated biphenyl (Aroclor 1254) exposure produces oxidative damage and neuronal death of ventral midbrain dopaminergic systems. Toxicol Sci 125:496–508.  https://doi.org/10.1093/toxsci/kfr313 CrossRefPubMedGoogle Scholar
  112. 112.
    Lee KF, Soares C, Thivierge JP, Béïque JC (2016) Correlated synaptic inputs drive dendritic calcium amplification and cooperative plasticity during clustered synapse development. Neuron 89:784–799.  https://doi.org/10.1016/j.neuron.2016.01.012 CrossRefPubMedGoogle Scholar
  113. 113.
    Lein PJ, Supasai S, Guignet M (2018) Chapter 9: Apoptosis as a mechanism of developmental neurotoxicity. In: Slikker W Jr, Paule MG, Wang C (eds) Handbook of Developmental Neurotoxicology, 2nd edn. Elsevier Inc, Amsterdam, pp 91–112CrossRefGoogle Scholar
  114. 114.
    Lein PJ, Mervis RF, Bachstetter AD, Yang D, Tilson HA, Harry GJ et al (2007) Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls. Environ Health Perspect 115:556–563.  https://doi.org/10.1289/ehp.9773 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Lesiak A, Zhu M, Chen H, Appleyard SM, Impey S, Lein PJ et al (2014) The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation. J Neurosci 34:717–725.  https://doi.org/10.1523/JNEUROSCI.2884-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Leung YK, Ouyang B, Niu L, Xie C, Ying J, Medvedovic M et al (2018) Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics 13:290–300.  https://doi.org/10.1080/15592294.2018.1445901 CrossRefPubMedGoogle Scholar
  117. 117.
    Li ZM, Hernandez-Moreno D, Main KM, Skakkebæk NE, Kiviranta H, Toppari J et al (2018) Association of in utero persistent organic pollutant exposure with placental thyroid hormones. Endocrinology 159:3473–3481.  https://doi.org/10.1210/en.2018-00542 CrossRefPubMedGoogle Scholar
  118. 118.
    Liu CH, Huang CY, Huang CC (2012) Occupational neurotoxic diseases in Taiwan. Saf Health Work. 3:257–267.  https://doi.org/10.5491/SHAW.2012.3.4.257 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Malisch R, Kotz A (2014) Dioxins and PCBs in feed and food–review from European perspective. Sci Total Environ 491–492:2–10.  https://doi.org/10.1016/j.scitotenv.2014.03.022 CrossRefPubMedGoogle Scholar
  120. 120.
    Mariussen E, Fonnum F (2001) The effect of polychlorinated biphenyls on the high affinity uptake of the neurotransmitters, dopamine, serotonin, glutamate and GABA, into rat brain synaptosomes. Toxicology 159:11–21.  https://doi.org/10.1016/S0300-483X(00)00374-7 CrossRefPubMedGoogle Scholar
  121. 121.
    Mariussen E, Myhre O, Reistad T, Fonnum F (2002) The polychlorinated biphenyl mixture aroclor 1254 induces death of rat cerebellar granule cells: the involvement of the N-methyl-d-aspartate receptor and reactive oxygen species. Toxicol Appl Pharmacol 179:137–144.  https://doi.org/10.1006/taap.2002.9353 CrossRefPubMedGoogle Scholar
  122. 122.
    Martino R, Candundo H, Lieshout PV, Shin S, Crispo JAG, Barakat-Haddad C (2017) Onset and progression factors in Parkinson’s disease: A systematic review. Neurotoxicology 61:132–141.  https://doi.org/10.1016/j.neuro.2016.04.003 CrossRefPubMedGoogle Scholar
  123. 123.
    Mattson MP (2015) Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle. NPJ Aging Mech Dis.  https://doi.org/10.1038/npjamd.2015.3 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Mellor CL, Steinmetz FP, Cronin MT (2016) The identification of nuclear receptors associated with hepatic steatosis to develop and extend adverse outcome pathways. Crit Rev Toxicol 46(2):138–152.  https://doi.org/10.3109/10408444.2015.1089471 CrossRefPubMedGoogle Scholar
  125. 125.
    Mengeling BJ, Furlow JD (2015) Pituitary specific retinoid-X receptor ligand interactions with thyroid hormone receptor signaling revealed by high throughput reporter and endogenous gene responses. Toxicol In Vitro 29:1609–1618.  https://doi.org/10.1016/j.tiv.2015.06.018 CrossRefPubMedGoogle Scholar
  126. 126.
    Mitchell MM, Woods R, Chi L-H, Schmidt RJ, Pessah IN, Kostyniak PJ et al (2012) Levels of select PCB and PBDE congeners in human post-mortem brain reveal possible environmental involvement in 15q11-q13 duplication autism spectrum disorder. Env Molec Mutagenesis 53:589–598.  https://doi.org/10.1002/em.21722 CrossRefGoogle Scholar
  127. 127.
    Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J et al (2018) Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol 136:821–853.  https://doi.org/10.1007/s00401-018-1932-x CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Mundy WR, Shafer TJ, Tilson HA, Kodavanti PR (1999) Extracellular calcium is required for the polychlorinated biphenyl-induced increase of intracellular free calcium levels in cerebellar granule cell culture. Toxicology 136:27–39.  https://doi.org/10.1016/S0300-483X(99)00052-9 CrossRefPubMedGoogle Scholar
  129. 129.
    Nandipati, Litvan (2016) Int J Environ Res Public Health 13(9):E881  https://doi.org/10.3390/ijerph13090881
  130. 130.
    Napoli E, Hung C, Wong S, Giulivi C (2013) Toxicity of the flame-retardant BDE-49 on brain mitochondria and neuronal progenitor striatal cells enhanced by a PTEN-deficient background. Toxicol Sci 132:196–210.  https://doi.org/10.1093/toxsci/kfs339 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Ness DK, Schantz SL, Moshtaghian J, Hansen LG (1993) Effects of perinatal exposure to specific PCB congeners on thyroid hormone concentrations and thyroid histology in the rat. Toxicol Lett 68:311–323.  https://doi.org/10.1016/0378-4274(93)90023-Q CrossRefPubMedGoogle Scholar
  132. 132.
    Neugebauer J, Wittsiepe J, Kasper-Sonnenberg M, Schoneck N, Scholmerich A, Wilhelm M (2015) The influence of low level pre- and perinatal exposure to PCDD/Fs, PCBs, and lead on attention performance and attention-related behavior among German school-aged children: results from the Duisburg Birth Cohort Study. Int J Hyg Environ Health 218:153–162.  https://doi.org/10.1016/j.ijheh.2014.09.005 CrossRefPubMedGoogle Scholar
  133. 133.
    Newman J, Gallo MV, Schell LM, DeCaprio AP, Denham M, Deane GD et al (2009) Analysis of PCB congeners related to cognitive functioning in adolescents. Neurotoxicology 30:686–696.  https://doi.org/10.1016/j.neuro.2009.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Niknam Y, Feng W, Cherednichenko G, Dong Y, Joshi SN, Vyas SM et al (2013) Structure–activity relationship of selected meta- and para-hydroxylated non-dioxin like polychlorinated biphenyls: from single RyR1 channels to muscle dysfunction. Toxicol Sci 136:500–513.  https://doi.org/10.1093/toxsci/kft202 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Nowack N, Wittsiepe J, Kasper-Sonnenberg M, Wilhelm M, Scholmerich A (2015) Influence of low-level prenatal exposure to PCDD/Fs and PCBs on empathizing, systemizing and autistic traits: results from the duisburg birth cohort study. PLoS One 10:e0129906.  https://doi.org/10.1371/journal.pone.0129906 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Okabe E, Tsujimoto Y, Kobayashi Y (2000) Calmodulin and cyclic ADP-ribose interaction in Ca2 signaling related to cardiac sarcoplasmic reticulum: superoxide anion radical-triggered Ca2 release. Antioxid Redox Signal 2:47–54.  https://doi.org/10.1089/ars.2000.2.1-47 CrossRefPubMedGoogle Scholar
  137. 137.
    Olguin-Albuerne M, Moran J (2015) ROS produced by NOX2 control in vitro development of cerebellar granule neurons development. ASN Neuro 7:1–28.  https://doi.org/10.1177/1759091415578712 CrossRefGoogle Scholar
  138. 138.
    Olsson B, Portelius E, Cullen NC, Sandelius Å, Zetterberg H, Andreasson U et al (2018) Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol.  https://doi.org/10.1001/jamaneurol.2018.3746 CrossRefPubMedGoogle Scholar
  139. 139.
    Oppenheimer JH, Schwartz HL (1997) Molecular basis of thyroid hormone-dependent brain development. Endocr Rev 18:462–475.  https://doi.org/10.1210/edrv.18.4.0309 CrossRefPubMedGoogle Scholar
  140. 140.
    Orenstein ST, Thurston SW, Bellinger DC, Schwartz JD, Amarasiriwardena CJ, Altshul LM et al (2014) Prenatal organochlorine and methylmercury exposure and memory and learning in school-age children in communities near the New Bedford Harbor Superfund site, Massachusetts. Environ Health Perspect 122:1253–1259.  https://doi.org/10.1289/ehp.1307804 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Park HY, Hertz-Picciotto I, Sovcikova E, Kocan A, Drobna B, Trnovec T (2010) Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: a birth cohort study. Environ Health 9:51.  https://doi.org/10.1186/1476-069X-9-51 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauer PJ, Weisglas-Kuperus N (1999) Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr 134:33–41.  https://doi.org/10.1016/S0022-3476(99)70369-0 CrossRefPubMedGoogle Scholar
  143. 143.
    Peper M, Klett M, Morgenstern R (2005) Neuropsychological effects of chronic low-dose exposure to polychlorinated biphenyls (PCBs): a cross-sectional study. Environ Health 4:22.  https://doi.org/10.1186/1476-069X-4-22 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Pessah IN (2001) Ryanodine receptor acts as a sensor for redox stress. Pest Manag Sci 57:941–945.  https://doi.org/10.1002/ps.391 CrossRefPubMedGoogle Scholar
  145. 145.
    Pessah IN, Beltzner C, Burchiel SW, Sridhar G, Penning T, Feng W (2001) A bioactive metabolite of benzo[a]pyrene, benzo[a]pyrene-7,8-dione, selectively alters microsomal Ca2 + transport and ryanodine receptor function. Mol Pharmacol 59:506–513CrossRefPubMedGoogle Scholar
  146. 146.
    Pessah IN, Cherednichenko G, Lein PJ (2010) Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 125:260–285.  https://doi.org/10.1016/j.pharmthera.2009.10.009 CrossRefPubMedGoogle Scholar
  147. 147.
    Pessah IN, Hansen LG, Albertson TE, Garner CE, Ta TA, Do Z et al (2006) Structure–activity relationship for noncoplanar polychlorinated biphenyl congeners toward the ryanodine receptor-Ca2 + channel complex type 1 (RyR1). Chem Res Toxicol 19:92–101.  https://doi.org/10.1021/tx050196m CrossRefPubMedGoogle Scholar
  148. 148.
    Petersen MS, Halling J, Bech S, Wermuth L, Weihe P, Neilsen F et al (2008) Impact of dietary exposure to food contaminants on the risk of Parkinson’s disease. Neurotoxicology 29:584–590.  https://doi.org/10.1016/j.neuro.2008.03.001 CrossRefPubMedGoogle Scholar
  149. 149.
    Plusquellec P, Muckle G, Dewailly E, Ayotte P, Begin G, Desrosiers C et al (2010) The relation of environmental contaminants exposure to behavioral indicators in Inuit preschoolers in Arctic Quebec. Neurotoxicology 31:17–25.  https://doi.org/10.1016/j.neuro.2009.10.008 CrossRefPubMedGoogle Scholar
  150. 150.
    Pruitt DL, Meserve LA, Bingman VP (1999) Reduced growth of intra- and infra-pyramidal mossy fibers is produced by continuous exposure to polychlorinated biphenyl. Toxicology 138:11–17.  https://doi.org/10.1016/S0300-483X(99)00073-6 CrossRefPubMedGoogle Scholar
  151. 151.
    Putschögl FM, Gaum PM, Schettgen T, Kraus T, Gube M, Lang J (2015) Effects of occupational exposure to polychlorinated biphenyls on urinary metabolites of neurotransmitters: a cross-sectional and longitudinal perspective. Int J Hyg Environ Health 218:452–460.  https://doi.org/10.1016/j.ijheh.2015.03.009 CrossRefPubMedGoogle Scholar
  152. 152.
    Raymond LA (2017) Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 483:1051–1062.  https://doi.org/10.1016/j.bbrc.2016.07.058 CrossRefPubMedGoogle Scholar
  153. 153.
    Richardson SD, Plewa MJ, Wagner ED, Schoeny R, Demarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636:178–242.  https://doi.org/10.1016/j.mrrev.2007.09.001 CrossRefPubMedGoogle Scholar
  154. 154.
    Richardson SD, Thruston AD Jr, Rav-Acha C, Groisman L, Popilevsky I, Juraev O et al (2003) Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Environ Sci Technol 37:3782–3793.  https://doi.org/10.1021/es030339w CrossRefPubMedGoogle Scholar
  155. 155.
    Rogan WJ (1982) PCBs and cola-colored babies: Japan, 1968, and Taiwan, 1979. Teratology 26:259–261.  https://doi.org/10.1002/tera.1420260307 CrossRefPubMedGoogle Scholar
  156. 156.
    Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S, Fernández-Salguero PM (2018) The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 185:50–63.  https://doi.org/10.1016/j.pharmthera.2017.12.003 CrossRefPubMedGoogle Scholar
  157. 157.
    Rosenquist AH, Hoyer BB, Julvez J, Sunyer J, Pedersen HS, Lenters V et al (2017) Prenatal and Postnatal PCB-153 and p, p’-DDE Exposures and Behavior Scores at 5–9 Years of Age among Children in Greenland and Ukraine. Environ Health Perspect 125(10):107002.  https://doi.org/10.1289/EHP553 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Sable HJK, Schantz SL (2006) Executive function following developmental exposure to polychlorinated biphenyls (PCBs): what animal models have told us. In: Levin ED, Buccafusco JJ (eds) Animal models of cognitive impairment. Boca Raton (FL). https://www.ncbi.nlm.nih.gov/books/NBK2531/
  159. 159.
    Sagiv SK, Thurston SW, Bellinger DC, Altshul LM, Korrick SA (2012) Neuropsychological measures of attention and impulse control among 8-year-old children exposed prenatally to organochlorines. Environ Health Perspect 120:904–909.  https://doi.org/10.1289/ehp.1104372 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Sagiv SK, Thurston SW, Bellinger DC, Tolbert PE, Altshul LM, Korrick SA (2010) Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children. Am J Epidemiol 171:593–601.  https://doi.org/10.1093/aje/kwp427 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Samsó M, Feng W, Pessah IN, Allen PD (2009) Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol 7(4):e85.  https://doi.org/10.1371/journal.pbio.1000085 CrossRefPubMedGoogle Scholar
  162. 162.
    Schantz SL, Moshtaghian J, Ness DK (1995) Spatial learning deficits in adult rats exposed to ortho-substituted PCB congeners during gestation and lactation. Fundam Appl Toxicol 26:117–126.  https://doi.org/10.1006/faat.1995.1081 CrossRefPubMedGoogle Scholar
  163. 163.
    Schantz SL, Widholm JJ, Rice DC (2003) Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect 111:357–576.  https://doi.org/10.1289/ehp.5461 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Schantz SL, Gasior DM, Polverejan E, McCaffrey RJ, Sweeney AM, Humphrey HE et al (2001) Impairments of memory and learning in older adults exposed to polychlorinated biphenyls via consumption of Great Lakes fish. Environ Health Perspect 109:605–611.  https://doi.org/10.1289/ehp.01109605 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Secretariat of the Stockholm (2008) Secretariat of the Stockholm convention Stockholm convention—protecting human health and the environment from persistent organic pollutants. http://chm.pops.int/Home/tabid/2121/mctl/ViewDetails/EventModID/1126/EventID/46 8/xmid/6922/Default.aspx
  166. 166.
    Secretariat of the Stockholm (2014) Secretariat of the Stockholm convention the new POPs under the Stockholm convention. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx
  167. 167.
    Seegal RF (1996) Epidemiological and laboratory evidence of PCB-induced neurotoxicity. Crit Rev Toxicol 26:709–737.  https://doi.org/10.3109/10408449609037481 CrossRefPubMedGoogle Scholar
  168. 168.
    Seegal RF, Bush B, Brosch KO (1991) Comparison of effects of Aroclors 1016 and 1260 on non-human primate catecholamine function. Toxicology 66:145–163.  https://doi.org/10.1016/0300-483X(91)90215-M CrossRefPubMedGoogle Scholar
  169. 169.
    Seegal RF, Bush B, Brosch KO (1994) Decreases in dopamine concentrations in adult non-human primate brain persist following removal from polychlorinated biphenyls. Toxicology 86:71–87.  https://doi.org/10.1016/0300-483X(94)90054-X CrossRefPubMedGoogle Scholar
  170. 170.
    Seegal RF, Bush B, Shain W (1990) Lightly chlorinated ortho-substituted PCB congeners decrease dopamine in nonhuman primate brain and in tissue culture. Toxicol Appl Pharmacol 106:136–144.  https://doi.org/10.1016/0041-008X(90)90113-9 CrossRefPubMedGoogle Scholar
  171. 171.
    Seegal RF, Marek KL, Seibyl JP, Jennings DL, Molho ES, Higgins DS et al (2010) Occupational exposure to PCBs reduces striatal dopamine transporter densities only in women: a beta-CIT imaging study. Neurobiol Dis 38:219–225.  https://doi.org/10.1016/j.nbd.2010.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Seegal RF, Okoniewski RJ, Brosch KO, Bemis JC (2002) Polychlorinated biphenyls alter extraneuronal but not tissue dopamine concentrations in adult rat striatum: an in vivo microdialysis study. Environ Health Perspect 110:1113–1117.  https://doi.org/10.1289/ehp.021101113 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Sethi S, Morgan RK, Feng W, Lin Y, Li X, Luna C et al (2019) Comparative analyses of the 12 most abundant PCB congeners detected in human maternal serum for activity at the thyroid hormone receptor and ryanodine receptor. Environ Sci Technol 53:3948–3958.  https://doi.org/10.1021/acs.est.9b00535 CrossRefPubMedGoogle Scholar
  174. 174.
    Shain W, Bush B, Seegal R (1991) Neurotoxicity of polychlorinated biphenyls: structure–activity relationship of individual congeners. Toxicol Appl Pharmacol 111:33–42.  https://doi.org/10.1016/0041-008X(91)90131-W CrossRefPubMedGoogle Scholar
  175. 175.
    Shaul NJ, Dodder NG, Aluwihare LI, Mackintosh SA, Maruya KA, Chivers SJ et al (2015) Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California Bight. Environ Sci Technol 49:1328–1338.  https://doi.org/10.1021/es505156q CrossRefPubMedGoogle Scholar
  176. 176.
    Shelton JF, Hertz-Picciotto I, Pessah IN (2012) Tipping the balance of autism risk: potential mechanisms linking pesticides and autism. Environ Health Perspect 120:944–951.  https://doi.org/10.1289/ehp.1104553 CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Sioen I, Den Hond E, Nelen V, Van de Mieroop E, Croes K, Van Larebeke N et al (2013) Prenatal exposure to environmental contaminants and behavioural problems at age 7–8years. Environ Int 59:225–231.  https://doi.org/10.1016/j.envint.2013.06.014 CrossRefPubMedGoogle Scholar
  178. 178.
    Skovgaard AM, Houmann T, Landorph SL, Christiansen E (2004) Assessment and classification of psychopathology in epidemiological research of children 0-3 years of age: a review of the literature. Eur Child Adolesc Psychiatry 13:337–346.  https://doi.org/10.1007/s00787-004-0393-z CrossRefPubMedGoogle Scholar
  179. 179.
    Stahl L, Snyder B, Olsen A, Pitt J (2009) Contaminants in fish tissue from US lakes and reservoirs: a National probabilistic study. Environ Monit Assess 150:3–19.  https://doi.org/10.1007/s10661-008-0685-8 CrossRefPubMedGoogle Scholar
  180. 180.
    Stamou M, Streifel KM, Goines PE, Lein PJ (2013) Neuronal connectivity as a convergent target of gene x environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol 36:3–16.  https://doi.org/10.1016/j.ntt.2012.12.001 CrossRefPubMedGoogle Scholar
  181. 181.
    Steenland K, Hein MJ, Cassinelli RT 2nd, Prince MM, Nilsen NB, Whelan EA, Waters MA, Ruder AM, Schnorr TM (2006) Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiology 17:8–13.  https://doi.org/10.1097/01.ede.0000190707.51536.2b CrossRefPubMedGoogle Scholar
  182. 182.
    Stewart P, Fitzgerald S, Reihman J, Gump B, Lonky E, Darvill T et al (2003) Prenatal PCB exposure, the corpus callosum, and response inhibition. Environ Health Perspect 111:1670–1677.  https://doi.org/10.1289/ehp.6173 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Stewart P, Reihman J, Gump B, Lonky E, Darvill T, Pagano J (2005) Response inhibition at 8 and 9 1/2 years of age in children prenatally exposed to PCBs. Neurotoxicol Teratol 27:771–780.  https://doi.org/10.1016/j.ntt.2005.07.003 CrossRefPubMedGoogle Scholar
  184. 184.
    Stewart PW, Lonky E, Reihman J, Pagano J, Gump BB, Darvill T (2008) The relationship between prenatal PCB exposure and intelligence (IQ) in 9-year-old children. Environ Health Perspect 116:1416–1422.  https://doi.org/10.1289/ehp.11058 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Stewart PW, Reihman J, Lonky EI, Darvill TJ, Pagano J (2003) Cognitive development in preschool children prenatally exposed to PCBs and MeHg. Neurotoxicol Teratol 25:11–22.  https://doi.org/10.1016/S0892-0362(02)00320-3 CrossRefPubMedGoogle Scholar
  186. 186.
    Stewart PW, Sargent DM, Reihman J, Gump BB, Lonky E, Darvill T (2006) Response inhibition during Differential Reinforcement of Low Rates (DRL) schedules may be sensitive to low-level polychlorinated biphenyl, methylmercury, and lead exposure in children. Environ Health Perspect 114:1923–1929.  https://doi.org/10.1289/ehp.9216 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Strom M, Hansen S, Olsen SF, Haug LS, Rantakokko P, Kiviranta H et al (2014) Persistent organic pollutants measured in maternal serum and offspring neurodevelopmental outcomes—a prospective study with long-term follow-up. Environ Int 68:41–48.  https://doi.org/10.1016/j.envint.2014.03.002 CrossRefPubMedGoogle Scholar
  188. 188.
    Suzuki YJ, Ford GD (1999) Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol 31:345–353.  https://doi.org/10.1006/jmcc.1998.0872 CrossRefPubMedGoogle Scholar
  189. 189.
    Tatsuta N, Nakai K, Murata K, Suzuki K, Iwai-Shimada M, Kurokawa N et al (2014) Impacts of prenatal exposures to polychlorinated biphenyls, methylmercury, and lead on intellectual ability of 42-month-old children in Japan. Environ Res 133:321–326.  https://doi.org/10.1016/j.envres.2014.05.024 CrossRefPubMedGoogle Scholar
  190. 190.
    Tilson HA, Kodavanti PR (1997) Neurochemical effects of polychlorinated biphenyls: an overview and identification of research needs. Neurotoxicology 18:727–743PubMedGoogle Scholar
  191. 191.
    Trilivas I, Brown JH (1989) Increases in intracellular Ca2 + regulate the binding of [3H]phorbol 12,13-dibutyrate to intact 1321N1 astrocytoma cells. J Biol Chem 264:3102–3107Google Scholar
  192. 192.
    Ulbrich B, Stahlmann R (2004) Developmental toxicity of polychlorinated biphenyls (PCBs): a systematic review of experimental data. Arch Toxicol 78:252–268.  https://doi.org/10.1007/s00204-003-0519-y CrossRefPubMedGoogle Scholar
  193. 193.
    Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL et al (2017) Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 134(4):537–566.  https://doi.org/10.1007/s00401-017-1736-4 CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Verner MA, Hart JE, Sagiv SK, Bellinger DC, Altshul LM, Korrick SA (2015) Measured prenatal and estimated postnatal levels of polychlorinated biphenyls (PCBs) and ADHD-related behaviors in 8-year-old children. Environ Health Perspect 123:888–894.  https://doi.org/10.1289/ehp.1408084 CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Verner MA, Plusquellec P, Muckle G, Ayotte P, Dewailly E, Jacobson SW et al (2010) Alteration of infant attention and activity by polychlorinated biphenyls: unravelling critical windows of susceptibility using physiologically based pharmacokinetic modeling. Neurotoxicology 31:424–431.  https://doi.org/10.1016/j.neuro.2010.05.011 CrossRefPubMedGoogle Scholar
  196. 196.
    Vetter W, Alder L, Kallenborn R, Schlabach M (2000) Determination of Q1, an unknown organochlorine contaminant, in human milk, Antarctic air, and further environmental samples. Environ Pollut 110:401–409.  https://doi.org/10.1016/S0269-7491(99)00320-6 CrossRefPubMedGoogle Scholar
  197. 197.
    Villa A, Vegeto E, Poletti A, Maggi A (2016) Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev 37:372–402.  https://doi.org/10.1210/er.2016-1007 CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Vreugdenhil HJ, Lanting CI, Mulder PG, Boersma ER, Weisglas-Kuperus N (2002) Effects of prenatal PCB and dioxin background exposure on cognitive and motor abilities in Dutch children at school age. J Pediatr 140:48–56.  https://doi.org/10.1067/mpd.2002.119625 CrossRefPubMedGoogle Scholar
  199. 199.
    Wang MD, Little J, Gomes J, Cashman NR, Krewski D (2017) Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology. 61:101–130.  https://doi.org/10.1016/j.neuro.2016.06.015 CrossRefPubMedGoogle Scholar
  200. 200.
    Wayman GA, Bose DD, Yang D, Lesiak A, Bruun D, Impey S et al (2012) PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth. Environ Health Perspect 120:1003–1009.  https://doi.org/10.1289/ehp.1104833 CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Wayman GA, Yang D, Bose DD, Lesiak A, Ledoux V, Bruun D et al (2012) PCB-95 promotes dendritic growth via ryanodine receptor-dependent mechanisms. Environ Health Perspect 120:997–1002.  https://doi.org/10.1289/ehp.1104833 CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Weisskopf MG, Knekt P, O’Reilly EJ, Lyytinen J, Reunanen A, Laden F et al (2012) Polychlorinated biphenyls in prospectively collected serum and Parkinson’s disease risk. Mov Disord 27:1659–1665.  https://doi.org/10.1002/mds.25217 CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Wheeler MA, Rothhammer V, Quintana FJ (2017) Control of immune-mediated pathology via the aryl hydrocarbon receptor. J Biol Chem 292:12383–12389.  https://doi.org/10.1074/jbc.R116.767723 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    White RF, Palumbo CL, Yurgelun-Todd DA, Heaton KJ, Weihe P, Debes F et al (2011) Functional MRI approach to developmental methylmercury and polychlorinated biphenyl neurotoxicity. Neurotoxicology 32:975–980.  https://doi.org/10.1016/j.neuro.2011.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Williams GR (2008) Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20:784–794.  https://doi.org/10.1111/j.1365-2826.2008.01733.x CrossRefPubMedGoogle Scholar
  206. 206.
    Winneke G, Bucholski A, Heinzow B, Kramer U, Schmidt E, Walkowiak J et al (1998) Developmental neurotoxicity of polychlorinated biphenyls (PCBS): cognitive and psychomotor functions in 7-month old children. Toxicol Lett 102–103:423–428.  https://doi.org/10.1016/S0378-4274(98)00334-8 CrossRefPubMedGoogle Scholar
  207. 207.
    Winneke G, Walkowiak J, Lilienthal H (2002) PCB-induced neurodevelopmental toxicity in human infants and its potential mediation by endocrine dysfunction. Toxicology 181–182:161–165.  https://doi.org/10.1016/S0300-483X(02)00274-3 CrossRefPubMedGoogle Scholar
  208. 208.
    Wong PW, Brackney WR, Pessah IN (1997) Ortho-substituted polychlorinated biphenyls alter microsomal calcium transport by direct interaction with ryanodine receptors of mammalian brain. J Biol Chem 272:15145–15153.  https://doi.org/10.1074/jbc.272.24.15145 CrossRefPubMedGoogle Scholar
  209. 209.
    Wong PW, Joy RM, Albertson TE, Schantz SL, Pessah IN (1997) Ortho-substituted 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) alters rat hippocampal ryanodine receptors and neuroplasticity in vitro: evidence for altered hippocampal function. Neurotoxicology 18:443–456PubMedGoogle Scholar
  210. 210.
    Wong PW, Pessah IN (1997) Noncoplanar PCB 95 alters microsomal calcium transport by an immunophilin FKBP12-dependent mechanism. Mol Pharmacol 51:693–702.  https://doi.org/10.1124/mol.51.5.693 CrossRefPubMedGoogle Scholar
  211. 211.
    Wong PW, Pessah IN (1996) Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels. Mol Pharmacol 49:740–751. http://molpharm.aspetjournals.org/content/49/4/740/tab-article-info
  212. 212.
    Woods R, Vallero RO, Golub M, Suarez JK, Ta TA, Yasui DH et al (2012) Long-lived epigenetic interactions between perinatal PBDE exposure and Mecp2308 mutation. Hum Mol Genet 21:2399–2411.  https://doi.org/10.1093/hmg/dds046 CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Xia R, Stangler T, Abramson JJ (2000) Skeletal muscle ryanodine receptor is a redox sensor with a well defined redox potential that is sensitive to channel modulators. J Biol Chem 275:36556–36561.  https://doi.org/10.1074/jbc.M007613200 CrossRefPubMedGoogle Scholar
  214. 214.
    Yang D, Kania-Korwel I, Ghogha A, Chen H, Stamou M, Bose DD et al (2014) PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms. Toxicol Sci 138:379–392.  https://doi.org/10.1093/toxsci/kft334 CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Yang D, Kim KH, Phimister A, Bachstetter AD, Ward TR, Stackman RW et al (2009) Developmental exposure to polychlorinated biphenyls interferes with experience-dependent dendritic plasticity and ryanodine receptor expression in weanling rats. Environ Health Perspect 117:426–435.  https://doi.org/10.1289/ehp.11771 CrossRefPubMedGoogle Scholar
  216. 216.
    Yang D, Lein PJ (2010) Polychlorinated biphenyls increase apoptosis in the developing rat brain. Curr Neurobiol 1:70–76. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775291/#__ffn_sectitle
  217. 217.
    Yang JH, Kodavanti PR (2001) Possible molecular targets of halogenated aromatic hydrocarbons in neuronal cells. Biochem Biophys Res Commun 280:1372–1377.  https://doi.org/10.1006/bbrc.2001.4283 CrossRefPubMedGoogle Scholar
  218. 218.
    Yang M, Zhang X (2014) Halopyrroles: a new group of highly toxic disinfection byproducts formed in chlorinated saline wastewater. Environ Sci Technol 48:11846–11852.  https://doi.org/10.1021/es503312k CrossRefPubMedGoogle Scholar
  219. 219.
    Yuen B, Boncompagni S, Feng W, Yang T, Lopez JR, Matthaei KI et al (2012) Mice expressing T4826I-RYR1 are viable but exhibit sex- and genotype-dependent susceptibility to malignant hyperthermia and muscle damage. FASEB J 26:1311–1322.  https://doi.org/10.1096/fj.11-197582 CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Zahalka EA, Ellis DH, Goldey ES, Stanton ME, Lau C (2001) Perinatal exposure to polychlorinated biphenyls Aroclor 1016 or 1254 did not alter brain catecholamines nor delayed alternation performance in Long-Evans rats. Brain Res Bull 55:487–500.  https://doi.org/10.1016/S0361-9230(01)00548-2 CrossRefPubMedGoogle Scholar
  221. 221.
    Zhang H, Yolton K, Webster GM, Sjodin A, Calafat AM, Dietrich KN et al (2017) Prenatal PBDE and PCB exposures and reading, cognition, and externalizing behavior in children. Environ Health Perspect 125:746–752.  https://doi.org/10.1289/EHP478 CrossRefPubMedGoogle Scholar
  222. 222.
    Zhang R, Pessah IN (2017) Divergent mechanisms leading to signaling dysfunction in embryonic muscle by bisphenol A and tetrabromobisphenol A. Mol Pharmacol 91:428–436.  https://doi.org/10.1124/mol.116.107342 CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Zheng J, McKinnie SMK, El Gamal A, Feng W, Dong Y, Agarwal V et al (2018) Organohalogens naturally biosynthesized in marine environments and produced as disinfection byproducts alter sarco/endoplasmic reticulum Ca2+ dynamics. Environ Sci Technol 52:5469–5478.  https://doi.org/10.1021/acs.est.8b00512 CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Zoeller RT, Dowling AL, Vas AA (2000) Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology 141:181–189.  https://doi.org/10.1210/endo.141.1.7273 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisUSA
  2. 2.Professor Emeritus, School of Public HealthUniversity at AlbanyRensselaerUSA
  3. 3.Center for Environmental Research and Children’s Health (CERCH), School of Public HealthUniversity of CaliforniaBerkeleyUSA

Personalised recommendations