Advertisement

Prognostic significance of NAB2–STAT6 fusion variants and TERT promotor mutations in solitary fibrous tumors/hemangiopericytomas of the CNS: not (yet) clear

  • Rob VogelsEmail author
  • Nicolas Macagno
  • Klaus Griewank
  • Patricia Groenen
  • Marian Verdijk
  • Judy Fonville
  • Benno Kusters
  • French CNS SFT/HPC Consortium
  • Dutch CNS SFT/HPC Consortium
  • Dominique Figarella-Branger
  • Pieter Wesseling
  • Corinne Bouvier
  • Uta Flucke
Correspondence

Grading of meningeal solitary fibrous tumors/hemangiopericytomas (SFTs/HPCs) of the central nervous system (CNS) is nowadays based on histologic criteria as described in the revised fourth edition of the WHO Classification of CNS tumors [10] or the more recently published, updated version of the Marseille Grading System (MGS) [11]. Histology-based grading of CNS SFTs/HPCs allows for discriminating subgroups with significant differences in prognosis. However, the often piece meal resection of these tumors may hamper adequate evaluation of mitotic activity and necrosis, and thereby assessment of malignancy grade. NAB2–STAT6 fusion is the molecular hallmark of both soft tissue SFTs and CNS SFTs/HPCs, and the resulting fusion protein accumulates in the nucleus and acts as a transcriptional activator of early growth response mediated pathways with STAT6 immunohistochemistry being a very sensitive and specific tool for their diagnosis [5, 8, 12, 14]. For soft tissue SFTs, particular NAB2–STAT6...

Notes

Acknowledgements

This study was performed with a supporting research grant from the Stichting STOP Hersentumoren, the Netherlands.

French CNS SFT/HPC Consortium: Corinne Bouvier1,2, Philippe Cornu4, Henry Dufour5, Dominique Figarella-Branger1,3, Jacques Guyotat6, Anne Jouvet7, Nicolas Macagno1,2, Philippe Métellus2,3,4, Karima Mokhtari8, Alexandre Vasiljevic6, Pascale Varlet9. 1Department of Pathology and Neuropathology, Timone Hospital, APHM, Marseille, France; 2Aix-Marseille university, INSERM, MMG, Marseille, France; 3Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France; 4Department of Neurosurgery, Pitié-Salpétrière Hospital, Paris, France; 5Department of Neurosurgery, Timone Hospital, Marseille, France; 6Department of Neurosurgery, CHU Lyon, Lyon, France; 7Department of Neuropathology, CHU Lyon, Lyon, France; 8Department of Neuropathology, Pitié-Salpétrière Hospital, Paris, France; 9Department of Neuropathology, Sainte-Anne Hospital, Paris, France.

Dutch CNS SFT/HPC Consortium: R. Vogels1,2, U. Flucke1,3, B. Küsters1,4, P. Groenen1, P. Wesseling3,5, E. Bekers6, M. Verdijk1, M. Djafarihamedani1, E. Kurt7,8, H. Küsters-Vandevelde9, R. Fleischeuer10, S. Leenstra11,12, P. Robe13, W. Spliet14, D. Troost15, W. van Furth16, 1Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands; 2Department of Pathology, Stichting PAMM, Eindhoven, The Netherlands; 3Princess Máxima Center for Pediatric Oncology, Utrecht, and University Medical Center Utrecht, Utrecht, The Netherlands; 4Department of Pathology, Maastricht University Medical Center+, Maastricht, The Netherlands; 5Department of Pathology, Amsterdam Universities Medical Center/VU University Medical Center, Amsterdam, The Netherlands; 6Pathologie-DNA, Location Jeroen Bosch Hospital, Den Bosch, The Netherlands; 7Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands; 8Department of Neurosurgery, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands; 9Department of Pathology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands; 10Department of Pathology, St. Elisabeth Hospital, Tilburg, The Netherlands; 11Department of Neurosurgery, St. Elisabeth Hospital, Tilburg, The Netherlands; 12Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands; 13Department of Neurosurgery, University Medical Center Utrecht, The Netherlands; 14Department of Pathology, University Medical Center Utrecht, The Netherlands; 15Department of Pathology, Amsterdam Medical Center, Amsterdam, The Netherlands; 16Department of Neurosurgery, Amsterdam Medical Center, Amsterdam, The Netherlands.

Supplementary material

401_2019_1968_MOESM1_ESM.docx (142 kb)
Supplementary material 1 (DOCX 141 kb)
401_2019_1968_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 22 kb)

References

  1. 1.
    Akaike K, Kurisaki-Arakawa A, Hara K, Suehara Y, Takagi T, Mitani K et al (2015) Distinct clinicopathological features of NAB2–STAT6 fusion gene variants in solitary fibrous tumor with emphasis on the acquisition of highly malignant potential. Hum Pathol 46:347–356.  https://doi.org/10.1016/j.humpath.2014.11.018 CrossRefGoogle Scholar
  2. 2.
    Bahrami A, Lee S, Schaefer IM, Boland JM, Patton KT, Pounds S et al (2016) TERT promoter mutations and prognosis in solitary fibrous tumor. Mod Pathol 29:1511–1522.  https://doi.org/10.1038/modpathol.2016.126 CrossRefGoogle Scholar
  3. 3.
    Barthelmeβ S, Geddert H, Boltze C, Moskalev EA, Bieg M, Sirbu H et al (2014) Solitary fibrous tumors/hemangiopericytomas with different variants of the NAB2–STAT6 gene fusion are characterized by specific histomorphology and distinct clinicopathological features. Am J Pathol 184:1209–1218.  https://doi.org/10.1016/j.ajpath.2013.12.016 CrossRefGoogle Scholar
  4. 4.
    Bertero L, Anfossi V, Osella-Abate S, Disanto MG, Mantovani C, Zenga F et al (2018) Pathological prognostic markers in central nervous system solitary fibrous tumour/hemangiopericytoma: evidence from a small series. PLoS One 13:e0203570.  https://doi.org/10.1371/journal.pone.0203570 CrossRefGoogle Scholar
  5. 5.
    Chmielecki J, Crago AM, Rosenberg M, O’Connor R, Walker SR, Ambrogio L et al (2013) Whole-exome sequencing identifies a recurrent NAB2–STAT6 fusion in solitary fibrous tumors. Nat Genet 45:131–132.  https://doi.org/10.1038/ng.2522 CrossRefGoogle Scholar
  6. 6.
    Chuang IC, Liao KC, Huang HY, Kao YC, Li CF, Huang SC et al (2016) NAB2–STAT6 gene fusion and STAT6 immunoexpression in extrathoracic solitary fibrous tumors: the association between fusion variants and locations. Pathol Int 66:288–296.  https://doi.org/10.1111/pin.12408 CrossRefGoogle Scholar
  7. 7.
    Demicco EG, Wani K, Ingram D, Wagner M, Maki RG, Rizzo A et al (2018) TERT promoter mutations in solitary fibrous tumour. Histopathology 73:843–851.  https://doi.org/10.1111/his.13703 CrossRefGoogle Scholar
  8. 8.
    Doyle LA, Vivero M, Fletcher CD, Mertens F, Hornick JL (2013) Nuclear expression of STAT6 distinguishes solitary fibrous tumor from histologic mimics. Mod Pathol.  https://doi.org/10.1038/modpathol.2013.164 Google Scholar
  9. 9.
    Fritchie KJ, Jin L, Rubin BP, Burger PC, Jenkins SM, Barthelmess S et al (2016) NAB2–STAT6 gene fusion in meningeal hemangiopericytoma and solitary fibrous tumor. J Neuropathol Exp Neurol 75:263–271.  https://doi.org/10.1093/jnen/nlv026 CrossRefGoogle Scholar
  10. 10.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Figarella-Branger D et al (2016) WHO classification of tumours of the central nervous system, 4th edn. International Agency for Research on Cancer (IARC), LyonGoogle Scholar
  11. 11.
    Macagno N, Vogels R, Appay R, Colin C, Mokhtari K, French CNSSFTHPCC et al (2018) Grading of meningeal solitary fibrous tumors/hemangiopericytomas: analysis of the prognostic value of the Marseille Grading System in a cohort of 132 patients. Brain Pathol.  https://doi.org/10.1111/bpa.12613 Google Scholar
  12. 12.
    Mohajeri A, Tayebwa J, Collin A, Nilsson J, Magnusson L, von Steyern FV et al (2013) Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosom Cancer 52:873–886.  https://doi.org/10.1002/gcc.22083 CrossRefGoogle Scholar
  13. 13.
    Nakada S, Minato H, Nojima T (2016) Clinicopathological differences between variants of the NAB2–STAT6 fusion gene in solitary fibrous tumors of the meninges and extra-central nervous system. Brain Tumor Pathol 33:169–174.  https://doi.org/10.1007/s10014-016-0264-6 CrossRefGoogle Scholar
  14. 14.
    Robinson DR, Wu YM, Kalyana-Sundaram S, Cao X, Lonigro RJ, Sung YS et al (2013) Identification of recurrent NAB2–STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 45:180–185.  https://doi.org/10.1038/ng.2509 CrossRefGoogle Scholar
  15. 15.
    Tai HC, Chuang IC, Chen TC, Li CF, Huang SC, Kao YC et al (2015) NAB2–STAT6 fusion types account for clinicopathological variations in solitary fibrous tumors. Mod Pathol 25:25.  https://doi.org/10.1038/modpathol.2015.90 Google Scholar
  16. 16.
    Yuzawa S, Nishihara H, Wang L, Tsuda M, Kimura T, Tanino M et al (2016) Analysis of NAB2–STAT6 gene fusion in 17 cases of meningeal solitary fibrous tumor/hemangiopericytoma: review of the literature. Am J Surg Pathol 40:1031–1040.  https://doi.org/10.1097/PAS.0000000000000625 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rob Vogels
    • 1
    • 2
    Email author
  • Nicolas Macagno
    • 3
    • 4
  • Klaus Griewank
    • 5
  • Patricia Groenen
    • 1
  • Marian Verdijk
    • 1
  • Judy Fonville
    • 2
  • Benno Kusters
    • 1
    • 6
  • French CNS SFT/HPC Consortium
  • Dutch CNS SFT/HPC Consortium
  • Dominique Figarella-Branger
    • 3
    • 7
  • Pieter Wesseling
    • 8
    • 9
    • 10
  • Corinne Bouvier
    • 3
    • 4
  • Uta Flucke
    • 1
    • 9
  1. 1.Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
  2. 2.Department of PathologyStichting PAMMEindhovenThe Netherlands
  3. 3.Department of Pathology and NeuropathologyTimone Hospital, APHMMarseilleFrance
  4. 4.Aix-Marseille University, INSERM, MMGMarseilleFrance
  5. 5.Department of DermatologyUniversity Hospital EssenEssenGermany
  6. 6.Department of PathologyMaastricht University Medical CenterMaastrichtThe Netherlands
  7. 7.CNRS, Institute of Neurophysiopathology (INP)Aix-Marseille UniversityMarseilleFrance
  8. 8.Department of PathologyAmsterdam Universities Medical Center, VU University Medical CenterAmsterdamThe Netherlands
  9. 9.Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
  10. 10.Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations