Acta Neuropathologica

, Volume 137, Issue 4, pp 557–569 | Cite as

Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease

  • Stephen A. Semick
  • Rahul A. Bharadwaj
  • Leonardo Collado-Torres
  • Ran Tao
  • Joo Heon Shin
  • Amy Deep-Soboslay
  • James R. Weiss
  • Daniel R. Weinberger
  • Thomas M. Hyde
  • Joel E. Kleinman
  • Andrew E. JaffeEmail author
  • Venkata S. MattayEmail author
Original Paper


Late-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD, we surveyed 420,852 DNA methylation (DNAm) sites from neurotypical controls (N = 49) and late-onset AD patients (N = 24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum). We identified 858 sites with robust differential methylation collectively annotated to 772 possible genes (FDR < 5%, within 10 kb). These sites were overrepresented in AD genetic risk loci (p = 0.00655) and were enriched for changes during normal aging (p < 2.2 × 10−16), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR < 5%). To functionally validate these associations, we generated and analyzed corresponding transcriptome data to prioritize 130 genes within 10 kb of the differentially methylated sites. These 130 genes were differentially expressed between AD cases and controls and their expression was associated with nearby DNAm (p < 0.05). This integrated analysis implicates novel genes in Alzheimer’s disease, such as ANKRD30B. These results highlight DNAm differences in Alzheimer’s disease that have gene expression correlates, further implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


DNA methylation Alzheimer’s disease RNA sequencing Postmortem human brain tissue Human brain genomics 


Author contributions

SAS performed analyses and led the writing of the manuscript. RAB assessed neuropathology, contributed to biological study design and interpretation, and writing of the manuscript. LCT processed RNA-seq data and contributed to its analysis. RT performed APOE4 genotyping. JHS performed data generation. AD performed clinical reviews. JRW contributed to the analysis of the DNAm data. DRW contributed to the study design, interpretation of the results, and writing of the manuscript. TMH performed tissue dissections, contributed to the study design, interpretation of the results, and writing of the manuscript. JEK oversaw tissue collection and contributed to the study design, interpretation of the results, and writing of the manuscript. AEJ and VSM co-led the study, including the design, statistical analyses, interpretation, and writing of the manuscript.


This work was supported by the funding from Lieber Institute for Brain Development and the Maltz Research Laboratories.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

Postmortem human brain tissue was obtained by autopsy primarily from the Offices of the Chief Medical Examiner of the District of Columbia, and of the Commonwealth of Virginia, Northern District, all with informed consent from the legal next of kin (protocol 90-M-0142 approved by the NIMH/NIH Institutional Review Board).

Consent for publication

Not applicable.

Supplementary material

401_2019_1966_MOESM1_ESM.docx (5.7 mb)
Supplementary material 1 (DOCX 5816 kb)
401_2019_1966_MOESM2_ESM.xlsx (6.5 mb)
Supplementary material 2 (XLSX 6659 kb)


  1. 1.
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data.
  2. 2.
    Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD et al (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369. CrossRefGoogle Scholar
  3. 3.
    Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman AP et al (2012) Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis 29:571–588. CrossRefGoogle Scholar
  4. 4.
    Bharadwaj R, Peter CJ, Jiang Y, Roussos P, Vogel-Ciernia A, Shen EY et al (2014) Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 84:997–1008. CrossRefGoogle Scholar
  5. 5.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica 82(4):239–259CrossRefGoogle Scholar
  6. 6.
    Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR et al (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 34:2091–2099. CrossRefGoogle Scholar
  7. 7.
    Collado-Torres L, Burke EE, Peterson A, Shin JH, Straub RE, Rajpurohi A et al (2018) Regional heterogeneity in gene expression, regulation and coherence in hippocampus and dorsolateral prefrontal cortex across development and in schizophrenia. bioRxiv. Google Scholar
  8. 8.
    Conejero-Goldberg C, Hyde TM, Chen S, Herman MM, Kleinman JE, Davies P et al (2015) Cortical Transcriptional Profiles in APOE4 Carriers with Alzheimer's disease: patterns of protection and degeneration. J Alzheimers Dis 48(4):969–978CrossRefGoogle Scholar
  9. 9.
    Coppieters N, Dieriks BV, Lill C, Faull RL, Curtis MA, Dragunow M (2014) Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging 35:1334–1344. CrossRefGoogle Scholar
  10. 10.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923CrossRefGoogle Scholar
  11. 11.
    Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S et al (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43. CrossRefGoogle Scholar
  12. 12.
    De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17:1156–1163. CrossRefGoogle Scholar
  13. 13.
    Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278:1349–1356CrossRefGoogle Scholar
  14. 14.
    Fleminger S (2003) Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 74(7):857–862CrossRefGoogle Scholar
  15. 15.
    Gasparoni G, Bultmann S, Lutsik P, Kraus TFJ, Sordon S, Vlcek J et al (2018) DNA methylation analysis on purified neurons and glia dissects age and Alzheimer’s disease-specific changes in the human cortex. Epigenet Chromatin 11:41. CrossRefGoogle Scholar
  16. 16.
    Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai LH et al (2015) Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518:365–369. CrossRefGoogle Scholar
  17. 17.
    Graff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM et al (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483:222–226. CrossRefGoogle Scholar
  18. 18.
    Guintivano J, Aryee MJ, Kaminsky ZA (2013) A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics 8:290–302. CrossRefGoogle Scholar
  19. 19.
    Gutierrez-Arcelus M, Ongen H, Lappalainen T, Montgomery SB, Buil A, Yurovsky A et al (2015) Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. PLoS Genet 11:e1004958. CrossRefGoogle Scholar
  20. 20.
    Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83. CrossRefGoogle Scholar
  21. 21.
    Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115. CrossRefGoogle Scholar
  22. 22.
    Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform 13:86. CrossRefGoogle Scholar
  23. 23.
    Hyman BT, Trojanowski JQ (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56(10):1095–1097CrossRefGoogle Scholar
  24. 24.
    Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186. CrossRefGoogle Scholar
  25. 25.
    Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15:R31. CrossRefGoogle Scholar
  26. 26.
    Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP et al (2012) Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol 41:200–209. CrossRefGoogle Scholar
  27. 27.
    Jager D, Stockert E, Gure AO, Scanlan MJ, Karbach J, Jager E et al (2001) Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res 61:2055–2061Google Scholar
  28. 28.
    Jansen I, Kiddle SJ, Posthuma D. Genetic meta-analysis identifies 9 novel loci and functional pathways for Alzheimer’s disease risk. Nature Genet.
  29. 29.
    Kaup AR, Nettiksimmons J, Harris TB, Sink KM, Satterfield S, Metti AL et al (2015) Cognitive resilience to apolipoprotein E epsilon4: contributing factors in black and white older adults. JAMA Neurol 72:340–348. CrossRefGoogle Scholar
  30. 30.
    Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. CrossRefGoogle Scholar
  31. 31.
    Klein HU, Bennett DA, De Jager PL (2016) The epigenome in Alzheimer’s disease: current state and approaches for a new path to gene discovery and understanding disease mechanism. Acta Neuropathol 132:503–514. CrossRefGoogle Scholar
  32. 32.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458. CrossRefGoogle Scholar
  33. 33.
    Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118. CrossRefGoogle Scholar
  34. 34.
    Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. CrossRefGoogle Scholar
  35. 35.
    Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA (2013) Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep 36:1027–1032. CrossRefGoogle Scholar
  36. 36.
    Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB et al (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453CrossRefGoogle Scholar
  37. 37.
    Lipska BK, Deep-Soboslay A, Weickert CS, Hyde TM, Martin CE, Herman MM et al (2006) Critical factors in gene expression in postmortem human brain: focus on studies in schizophrenia. Biol Psychiatry 60:650–658. CrossRefGoogle Scholar
  38. 38.
    Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118. CrossRefGoogle Scholar
  39. 39.
    Liu G, Jiang Y, Wang P, Feng R, Jiang N, Chen X et al (2012) Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J Neurochem 120:190–198. CrossRefGoogle Scholar
  40. 40.
    Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G, Volta M et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci 17:1164–1170. CrossRefGoogle Scholar
  41. 41.
    Magi S, Castaldo P, Macri ML, Maiolino M, Matteucci A, Bastioli G et al (2016) Intracellular calcium dysregulation: implications for Alzheimer’s disease. Biomed Res Int 2016:6701324. CrossRefGoogle Scholar
  42. 42.
    Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, Hill WD et al (2018) GWAS on family history of Alzheimer’s disease. Transl Psychiatry 8:99. CrossRefGoogle Scholar
  43. 43.
    Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E et al (2018) A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat Neurosci 21:1618–1627. CrossRefGoogle Scholar
  44. 44.
    Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4:e6617. CrossRefGoogle Scholar
  45. 45.
    Mastroeni D, Sekar S, Nolz J, Delvaux E, Lunnon K, Mill J et al (2017) ANK1 is up-regulated in laser captured microglia in Alzheimer’s brain; the importance of addressing cellular heterogeneity. PLoS One 12:e0177814. CrossRefGoogle Scholar
  46. 46.
    Miller JA, Guillozet-Bongaarts A, Gibbons LE, Postupna N, Renz A, Beller AE et al (2017) Neuropathological and transcriptomic characteristics of the aged brain. Elife. Google Scholar
  47. 47.
    Montano CM, Irizarry RA, Kaufmann WE, Talbot K, Gur RE, Feinberg AP et al (2013) Measuring cell-type specific differential methylation in human brain tissue. Genome Biol 14:R94. CrossRefGoogle Scholar
  48. 48.
    Mostafavi S, Gaiteri C, Sullivan SE, White CC, Tasaki S, Xu J et al (2018) A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat Neurosci 21:811–819. CrossRefGoogle Scholar
  49. 49.
    Nativio R, Donahue G, Berson A, Lan Y, Amlie-Wolf A, Tuzer F et al (2018) Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci 21:497–505. CrossRefGoogle Scholar
  50. 50.
    Ng B, White CC, Klein HU, Sieberts SK, McCabe C, Patrick E et al (2017) An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat Neurosci 20:1418–1426. CrossRefGoogle Scholar
  51. 51.
    Patel H, Dobson RJB, Newhouse SJ (2018) Meta-analysis of Alzheimer’s disease brain transcriptomic data. bioRxiv. Google Scholar
  52. 52.
    Price AJ, Collado-Torres L, Ivanov NA, Xia W, Burke EE, Shin JH et al (2018) Divergent neuronal DNA methylation patterns across human cortical development: critical periods and a unique role of CpH methylation. bioRxiv. Google Scholar
  53. 53.
    Radak Z, Hart N, Sarga L, Koltai E, Atalay M, Ohno H et al (2010) Exercise plays a preventive role against Alzheimer’s disease. J Alzheimers Dis 20:777–783. CrossRefGoogle Scholar
  54. 54.
    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. CrossRefGoogle Scholar
  55. 55.
    Rizzardi LF, Hickey PF, DiBlasi VR, Tryggvadóttir R, Callahan CM, Idrizi A et al (2019) Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Nature Neurosci 22(2):307–316CrossRefGoogle Scholar
  56. 56.
    Sanchez-Mut JV, Aso E, Heyn H, Matsuda T, Bock C, Ferrer I et al (2014) Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer’s disease. Hippocampus 24:363–368. CrossRefGoogle Scholar
  57. 57.
    Sanchez-Mut JV, Aso E, Panayotis N, Lott I, Dierssen M, Rabano A et al (2013) DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease. Brain 136:3018–3027. CrossRefGoogle Scholar
  58. 58.
    Sanchez-Mut JV, Graff J (2015) Epigenetic alterations in Alzheimer’s disease. Front Behav Neurosci 9:347. CrossRefGoogle Scholar
  59. 59.
    Sanchez-Mut JV, Heyn H, Silva BA, Dixsaut L, Garcia-Esparcia P, Vidal E et al (2018) PM20D1 is a quantitative trait locus associated with Alzheimer’s disease. Nat Med 24:598–603. CrossRefGoogle Scholar
  60. 60.
    Sanchez-Mut JV, Heyn H, Vidal E, Moran S, Sayols S, Delgado-Morales R et al (2016) Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl Psychiatry 6:e718. CrossRefGoogle Scholar
  61. 61.
    Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59:912–921. CrossRefGoogle Scholar
  62. 62.
    Smith AR, Mill J, Smith RG, Lunnon K (2016) Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies. Neuroepigenetics 6:32–50CrossRefGoogle Scholar
  63. 63.
    Smith AR, Smith RG, Burrage J, Troakes C, Al-Sarraj S, Kalaria RN et al (2018) A cross-brain regions study of ANK1 DNA methylation in different neurodegenerative diseases. Neurobiol Aging 74:70–76. CrossRefGoogle Scholar
  64. 64.
    Smith AR, Smith RG, Condliffe D, Hannon E, Schalkwyk L, Mill J et al (2016) Increased DNA methylation near TREM2 is consistently seen in the superior temporal gyrus in Alzheimer’s disease brain. Neurobiol Aging 47:35–40. CrossRefGoogle Scholar
  65. 65.
    Smith RG, Hannon E, De Jager PL, Chibnik L, Lott SJ, Condliffe D et al (2018) Elevated DNA methylation across a 48-kb region spanning the HOXA gene cluster is associated with Alzheimer’s disease neuropathology. Alzheimers Dement. Google Scholar
  66. 66.
    Watson CT, Roussos P, Garg P, Ho DJ, Azam N, Katsel PL et al (2016) Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med 8:5. CrossRefGoogle Scholar
  67. 67.
    Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK et al (2016) Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538:523–527. CrossRefGoogle Scholar
  68. 68.
    Yamamoto T, Hirano A (1986) A comparative study of modified Bielschowsky, Bodian and thioflavin S stains on Alzheimer's neurofibrillary tangles. Neuropathol Appl Neurobiol 12(1):3–9CrossRefGoogle Scholar
  69. 69.
    Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J et al (2015) Association of brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol 72:15–24. CrossRefGoogle Scholar
  70. 70.
    Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153:707–720. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stephen A. Semick
    • 1
  • Rahul A. Bharadwaj
    • 1
  • Leonardo Collado-Torres
    • 1
    • 2
  • Ran Tao
    • 1
  • Joo Heon Shin
    • 1
  • Amy Deep-Soboslay
    • 1
  • James R. Weiss
    • 1
  • Daniel R. Weinberger
    • 1
    • 3
    • 4
    • 5
    • 6
  • Thomas M. Hyde
    • 1
    • 3
    • 4
  • Joel E. Kleinman
    • 1
    • 3
  • Andrew E. Jaffe
    • 1
    • 2
    • 6
    • 7
    • 8
    Email author
  • Venkata S. Mattay
    • 1
    • 4
    • 9
    Email author
  1. 1.Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUSA
  2. 2.Center for Computational BiologyJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreUSA
  4. 4.Department of NeurologyJohns Hopkins School of MedicineBaltimoreUSA
  5. 5.Department of NeuroscienceJohns Hopkins School of MedicineBaltimoreUSA
  6. 6.McKusick-Nathans Institute of Genetic MedicineJohns Hopkins School of MedicineBaltimoreUSA
  7. 7.Department of Mental HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  8. 8.Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  9. 9.Department of RadiologyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations