Acta Neuropathologica

, Volume 137, Issue 3, pp 437–454 | Cite as

Multiple system atrophy prions retain strain specificity after serial propagation in two different Tg(SNCA*A53T) mouse lines

  • Amanda L. WoermanEmail author
  • Abby Oehler
  • Sabeen A. Kazmi
  • Jisoo Lee
  • Glenda M. Halliday
  • Lefkos T. Middleton
  • Steve M. Gentleman
  • Daniel A. Mordes
  • Salvatore Spina
  • Lea T. Grinberg
  • Steven H. Olson
  • Stanley B. Prusiner
Original Paper


Previously, we reported that intracranial inoculation of brain homogenate from multiple system atrophy (MSA) patient samples produces neurological disease in the transgenic (Tg) mouse model TgM83+/−, which uses the prion protein promoter to express human α-synuclein harboring the A53T mutation found in familial Parkinson’s disease (PD). In our studies, we inoculated MSA and control patient samples into Tg mice constructed using a P1 artificial chromosome to express wild-type (WT), A30P, and A53T human α-synuclein on a mouse α-synuclein knockout background [Tg(SNCA+/+)Nbm, Tg(SNCA*A30P+/+)Nbm, and Tg(SNCA*A53T+/+)Nbm]. In contrast to studies using TgM83+/− mice, motor deficits were not observed by 330–400 days in any of the Tg(SNCA)Nbm mice after inoculation with MSA brain homogenates. However, using a cell-based bioassay to measure α-synuclein prions, we found brain homogenates from Tg(SNCA*A53T+/+)Nbm mice inoculated with MSA patient samples contained α-synuclein prions, whereas control mice did not. Moreover, these α-synuclein aggregates retained the biological and biochemical characteristics of the α-synuclein prions in MSA patient samples. Intriguingly, Tg(SNCA*A53T+/+)Nbm mice developed α-synuclein pathology in neurons and astrocytes throughout the limbic system. This finding is in contrast to MSA-inoculated TgM83+/− mice, which develop exclusively neuronal α-synuclein aggregates in the hindbrain that cause motor deficits with advanced disease. In a crossover experiment, we inoculated TgM83+/− mice with brain homogenate from two MSA patient samples or one control sample first inoculated, or passaged, in Tg(SNCA*A53T+/+)Nbm animals. Additionally, we performed the reverse experiment by inoculating Tg(SNCA*A53T+/+)Nbm mice with brain homogenate from the same two MSA samples and one control sample first passaged in TgM83+/− animals. The TgM83+/− mice inoculated with mouse-passaged MSA developed motor dysfunction and α-synuclein prions, whereas the mouse-passaged control sample had no effect. Similarly, the mouse-passaged MSA samples induced α-synuclein prion formation in Tg(SNCA*A53T+/+)Nbm mice, but the mouse-passaged control sample did not. The confirmed transmission of α-synuclein prions to a second synucleinopathy model and the ability to propagate prions between two distinct mouse lines while retaining strain-specific properties provides compelling evidence that MSA is a prion disease.


α-Synuclein Neurodegeneration Proteinopathies Transmission models 



We thank Robert Nussbaum for providing the Tg(SNCA)Nbm mice and the Hunters Point animal facility staff for breeding and caring for the animals used in this study. We also thank Eric Huang for his helpful discussion of the manuscript, and Martin Ingelsson (Uppsala University) and Deborah Mash (Miami Brain Brank) for providing control tissue. This work was supported by grants from the National Institutes of Health (AG002132 and AG031220), as well as by support from Daiichi Sankyo, the Henry M. Jackson Foundation, the Mary Jane Brinton Fund, and the Sherman Fairchild Foundation. The Sydney Brain Bank is supported by Neuroscience Research Australia and the University of New South Wales. Glenda M. Halliday is a National Health and Medical Research Council of Australia Senior Principal Research Fellow (1079679). The Parkinson’s UK Brain Bank at Imperial College London is funded by Parkinson’s UK, a charity registered in England and Wales (948776) and in Scotland (SC037554). The Massachusetts Alzheimer’s Disease Research Center is supported by the National Institutes of Health (AG005134), and the Neurodegenerative Disease Brain Bank at the University of California, San Francisco, receives funding support from NIH grants P01AG019724 and P50AG023501, the Consortium for Frontotemporal Dementia Research, and the Tau Consortium.

Compliance with ethical standards

Conflict of interest

The Institute for Neurodegenerative Diseases has a research collaboration with Daiichi Sankyo (Tokyo, Japan). S.B.P. is the chair of the Scientific Advisory Board of Alzheon, Inc., and a member of the Scientific Advisory Board of ViewPoint Therapeutics, neither of which has contributed financial or any other support to these studies.

Ethical approval

Animals were maintained in an AAALAC-accredited facility in compliance with the Guide for the Care and Use of Laboratory Animals. All procedures used in this study were approved by the University of California, San Francisco, Institutional Animal Care and Use Committee.

Supplementary material

401_2019_1959_MOESM1_ESM.pdf (12.8 mb)
Supplementary material 1 (PDF 13072 kb)


  1. 1.
    Bernis ME, Babila JT, Breid S, Wüsten KA, Wüllner U, Tamgüney G (2015) Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta Neuropathol Commun 3:75CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Carlson GA, Kingsbury DT, Goodman PA, Coleman S, Marshall ST, DeArmond S et al (1986) Linkage of prion protein and scrapie incubation time genes. Cell 46:503–511CrossRefPubMedGoogle Scholar
  3. 3.
    Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442CrossRefPubMedGoogle Scholar
  4. 4.
    Fleming SM, Salcedo J, Fernagut P-O, Rockenstein E, Masliah E, Levine MS et al (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J Neurosci 24:9434–9440CrossRefPubMedGoogle Scholar
  5. 5.
    Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533CrossRefPubMedGoogle Scholar
  6. 6.
    Gispert S, Del Turco D, Garrett L, Chen A, Bernard DJ, Hamm-Clement J et al (2003) Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol Cell Neurosci 24:419–429CrossRefPubMedGoogle Scholar
  7. 7.
    Gomez-Isla T, Irizarry MC, Mariash A, Cheung B, Soto O, Schrump S et al (2003) Motor dysfunction and gliosis with preserved dopaminergic markers in human α-synuclein A30P transgenic mice. Neurobiol Aging 24:245–258CrossRefPubMedGoogle Scholar
  8. 8.
    Graham JG, Oppenheimer DR (1969) Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry 32:28–34CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guerrero-Ferreira R, Taylor NM, Mona D, Ringler P, Lauer ME, Riek R et al (2018) Cryo-EM structure of alpha-synuclein fibrils. eLife 7:e36402CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang W, Zhao N, Bai X, Karram K, Trotter J, Goebbels S et al (2014) Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia 62:896–913CrossRefPubMedGoogle Scholar
  11. 11.
    Ikeda M, Kawarabayashi T, Harigaya Y, Sasaki A, Yamada S, Matsubara E et al (2009) Motor impairment and aberrant production of neurochemicals in human α-synuclein A30P + A53T transgenic mice with α-synuclein pathology. Brain Res 1250:232–241CrossRefPubMedGoogle Scholar
  12. 12.
    Jellinger KA, Lantos PL (2010) Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update. Acta Neuropathol 119:657–667CrossRefPubMedGoogle Scholar
  13. 13.
    Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A et al (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant α-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373CrossRefPubMedGoogle Scholar
  14. 14.
    Kahle PJ, Neumann M, Ozmen L, Müller V, Jacobsen H, Spooren W et al (2002) Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3:583–588CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaji S, Maki T, Kinoshita H, Uemura N, Ayaki T, Kawamoto Y et al (2018) Pathological endogenous α-synuclein accumulation in oligodendrocyte precursor cells potentially induces inclusions in multiple system atrophy. Stem Cell Rep 10:356–365CrossRefGoogle Scholar
  16. 16.
    Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68:668–681CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kuo YM, Li Z, Jiao Y, Gaborit N, Pani AK, Orrison BM et al (2010) Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Hum Mol Genet 19:1633–1650CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS et al (2002) Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99:8968–8973CrossRefPubMedGoogle Scholar
  19. 19.
    Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G et al (2018) Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun 9:3609CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li Y, Zhao C, Luo F, Liu Z, Gui X, Luo Z et al (2018) Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res 28:897–903CrossRefPubMedGoogle Scholar
  21. 21.
    Liu P, Wang X, Gao N, Zhu H, Dai X, Xu Y et al (2010) G protein-coupled receptor kinase 5, overexpressed in the α-synuclein up-regulation model of Parkinson’s disease, regulates bcl-2 expression. Brain Res 1307:134–141CrossRefPubMedGoogle Scholar
  22. 22.
    Mandler M, Valera E, Rockenstein E, Mante M, Weninger H, Patrick C et al (2015) Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol Neurodegener 10:10CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A et al (2000) Dopaminergic loss and inclusion body formation in a-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269CrossRefPubMedGoogle Scholar
  24. 24.
    May VEL, Ettle B, Poehler A-M, Nuber S, Ubhi K, Rockenstein E et al (2014) α-Synuclein impairs oligodendrocyte progenitor maturation in multiple system atrophy. Neurobiol Aging 35:2357–2368CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nishie M, Mori F, Yoshimoto M, Takahashi H, Wakabayashi K (2004) A quantitative investigation of neuronal cytoplasmic and intranuclear inclusions in the pontine and inferior olivary nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 30:546–554CrossRefPubMedGoogle Scholar
  26. 26.
    Nishiyama A, Suzuki R, Zhu X (2014) NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci 8:133CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nuber S, Rajsombath M, Minakaki G, Winkler J, Müller CP, Ericsson M et al (2018) Abrogating native α-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson’s disease. Neuron 100:75–90CrossRefPubMedGoogle Scholar
  28. 28.
    Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy–Drager syndrome). J Neurol Sci 94:79–100CrossRefPubMedGoogle Scholar
  29. 29.
    Papp MI, Lantos PL (1992) Accumulation of tubular structures in oligodendroglial and neuronal cells as the basic alteration in multiple system atrophy. J Neurol Sci 107:172–182CrossRefPubMedGoogle Scholar
  30. 30.
    Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A, Robinson JL et al (2018) Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557:558–563CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA 112:E5308–E5317CrossRefPubMedGoogle Scholar
  32. 32.
    Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A et al (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401CrossRefPubMedGoogle Scholar
  33. 33.
    Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I et al (2002) Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68:568–578CrossRefPubMedGoogle Scholar
  34. 34.
    Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M et al (1998) Eight prion strains have PrPSc molecules with different conformations. Nat Med 4:1157–1165CrossRefPubMedGoogle Scholar
  35. 35.
    Sharon R, Bar-Joseph I, Mirick GE, Serhan CN, Selkoe DJ (2003) Altered fatty acid composition of dopaminergic neurons expressing α-synuclein and human brains with α-synucleinopathies. J Biol Chem 278:49874–49881CrossRefPubMedGoogle Scholar
  36. 36.
    Shults CW, Rockenstein E, Crews L, Adame A, Mante M, Larrea G et al (2005) Neurological and neurodegenerative alterations in a transgenic mouse model expressing human α-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci 25:10689–10699CrossRefPubMedGoogle Scholar
  37. 37.
    Spillantini MG, Bird TD, Ghetti B (1998) Frontotemporal dementia and parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8:387–402CrossRefPubMedGoogle Scholar
  38. 38.
    van der Putten H, Wiederhold K-H, Probst A, Barbieri S, Mistl C, Danner S et al (2000) Neuropathology in mice expressing human α-synuclein. J Neurosci 20:6021–6029CrossRefPubMedGoogle Scholar
  39. 39.
    Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) α-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 249:180–182CrossRefPubMedGoogle Scholar
  40. 40.
    Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM et al (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci USA 110:19555–19560CrossRefPubMedGoogle Scholar
  41. 41.
    Woerman AL, Kazmi SA, Patel S, Aoyagi A, Oehler A, Widjaja K et al (2018) Familial Parkinson’s point mutation abolishes multiple system atrophy prion replication. Proc Natl Acad Sci USA 115:409–414CrossRefPubMedGoogle Scholar
  42. 42.
    Woerman AL, Kazmi SA, Patel S, Freyman Y, Oehler A, Aoyagi A et al (2018) MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 135:49–63CrossRefPubMedGoogle Scholar
  43. 43.
    Woerman AL, Stöhr J, Aoyagi A, Rampersaud R, Krejciova Z, Watts JC et al (2015) Propagation of prions causing synucleinopathies in cultured cells. Proc Natl Acad Sci USA 112:E4949–E4958CrossRefPubMedGoogle Scholar
  44. 44.
    Yazawa I, Giasson BI, Sasaki R, Zhang B, Joyce S, Uryu K et al (2005) Mouse model of multiple system atrophy α-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45:847–859CrossRefPubMedGoogle Scholar
  45. 45.
    Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D et al (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhou W, Milder JB, Freed CR (2008) Transgenic mice overexpressing tyrosine-to-cysteine mutant human alpha-synuclein: a progressive neurodegenerative model of diffuse Lewy body disease. J Biol Chem 283:9863–9870CrossRefPubMedGoogle Scholar
  47. 47.
    Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145–157CrossRefPubMedGoogle Scholar
  48. 48.
    Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138:745–753CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amanda L. Woerman
    • 1
    • 2
    Email author
  • Abby Oehler
    • 1
  • Sabeen A. Kazmi
    • 1
  • Jisoo Lee
    • 1
  • Glenda M. Halliday
    • 3
    • 4
    • 5
  • Lefkos T. Middleton
    • 6
  • Steve M. Gentleman
    • 7
  • Daniel A. Mordes
    • 8
  • Salvatore Spina
    • 2
  • Lea T. Grinberg
    • 2
  • Steven H. Olson
    • 1
    • 2
  • Stanley B. Prusiner
    • 1
    • 2
    • 9
  1. 1.Institute for Neurodegenerative Diseases, Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of NeurologyUniversity of CaliforniaSan FranciscoUSA
  3. 3.Brain and Mind Centre, Sydney Medical SchoolThe University of SydneySydneyAustralia
  4. 4.School of Medical Science, Faculty of MedicineUniversity of New South WalesSydneyAustralia
  5. 5.Neuroscience Research AustraliaRandwickAustralia
  6. 6.Ageing Epidemiology Research, School of Public HealthImperial College LondonLondonUK
  7. 7.Division of Brain Sciences, Department of MedicineImperial College LondonLondonUK
  8. 8.C.S. Kubik Laboratory for Neuropathology, Department of PathologyMassachusetts General HospitalBostonUSA
  9. 9.Department of Biochemistry and BiophysicsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations