Advertisement

The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments

  • Maria Cristina Morganti-Kossmann
  • Bridgette D. Semple
  • Sarah C. Hellewell
  • Nicole Bye
  • Jenna M. Ziebell
Review

Abstract

This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.

Notes

Acknowledgements

BDS is supported by a NHMRC Career Development Fellowship and the Central Clinical School, Monash University at the Alfred Hospital. Figure 3 provided by P. Casillas-Espinosa, W.L. Leung and L. Dill, Monash University.

References

  1. 1.
    Adams JH, Graham DI, Gennarelli TA (1983) Head injury in man and experimental animals: neuropathology. Acta Neurochir Suppl (Wien) 32:15–30CrossRefGoogle Scholar
  2. 2.
    Agha A, Sherlock M, Phillips J, Tormey W, Thompson CJ (2005) The natural history of post-traumatic neurohypophysial dysfunction. Eur J Endocrinol 152:371–377.  https://doi.org/10.1530/eje.1.01861 CrossRefPubMedGoogle Scholar
  3. 3.
    Almahmoud K, Namas RA, Zaaqoq AM, Abdul-Malak O, Namas R, Zamora R et al (2015) Prehospital hypotension is associated with altered inflammation dynamics and worse outcomes following blunt trauma in humans. Crit Care Med 43:1395–1404.  https://doi.org/10.1097/ccm.0000000000000964 CrossRefPubMedGoogle Scholar
  4. 4.
    Anthony D, Dempster R, Fearn S, Clements J, Wells G, Perry VH et al (1998) CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood-brain barrier breakdown. Curr Biol 8:923–926CrossRefPubMedGoogle Scholar
  5. 5.
    Bachstetter SJ, Webster SJ, Goulding DS, Morton JE, Watterson DM, Van Eldik LJ (2015) Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic. J Neuroinflamm 12:69CrossRefGoogle Scholar
  6. 6.
    Banks WA, Erickson MA (2010) The blood-brain barrier and immune function and dysfunction. Neurobiol Dis 37:26–32.  https://doi.org/10.1016/j.nbd.2009.07.031 CrossRefPubMedGoogle Scholar
  7. 7.
    Bennett ER, Reuter-Rice K, Laskowitz DT (2016) Genetic influences in traumatic brain injury. In: Laskowitz D, Grant G (eds) Translational research in traumatic brain injury. Frontiers in Neuroscience, Boca RatonGoogle Scholar
  8. 8.
    Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B (2004) How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 3:169–176.  https://doi.org/10.1111/j.1474-9728.2004.00101.x CrossRefPubMedGoogle Scholar
  9. 9.
    Bodhankar S, Lapato A, Chen Y, Vandenbark AA, Saugstad JA, Offner H (2015) Role for microglia in sex differences after ischemic stroke: importance of M2. Metab Brain Dis 30:1515–1529.  https://doi.org/10.1007/s11011-015-9714-9 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brickler T, Gresham K, Meza A, Coutermarsh-Ott S, Williams TM, Rothschild DE et al (2016) Nonessential role for the NLRP1 inflammasome complex in a murine model of traumatic brain injury. Mediat Inflamm.  https://doi.org/10.1155/2016/6373506 CrossRefGoogle Scholar
  11. 11.
    Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M (2016) Neuroprotection by estrogen and progesterone in traumatic brain injury and spinal cord injury. Curr Neuropharmacol 14:641–653CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bruce-Keller AJ, Dimayuga FO, Reed JL, Wang C, Angers R, Wilson ME et al (2007) Gender and estrogen manipulation do not affect traumatic brain injury in mice. J Neurotrauma 24:203–215.  https://doi.org/10.1089/neu.2006.0163 CrossRefPubMedGoogle Scholar
  13. 13.
    Buki A, Povlishock JT (2006) All roads lead to disconnection? Traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181–193.  https://doi.org/10.1007/s00701-005-0674-4 (discussion 193-184) CrossRefGoogle Scholar
  14. 14.
    Bulstrode H, Nicoll JAR, Hudson G, Chinnery PF, Di Pietro V, Belli A (2014) Mitochondrial DNA and traumatic brain injury. Ann Neurol 75:186–195.  https://doi.org/10.1002/ana.24116 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T et al (2007) Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 204:220–233.  https://doi.org/10.1016/j.expneurol.2006.10.013 CrossRefPubMedGoogle Scholar
  16. 16.
    Bye N, Turnley AM, Morganti-Kossmann MC (2012) Inflammatory regulators of redirected neural migration in the injured brain. Neurosignals 20:132–146.  https://doi.org/10.1159/000336542 CrossRefPubMedGoogle Scholar
  17. 17.
    Caplan HW, Cox CS, Bedi SS (2017) Do microglia play a role in sex differences in TBI? J Neurosci Res 95:509–517.  https://doi.org/10.1002/jnr.23854 CrossRefPubMedGoogle Scholar
  18. 18.
    Cerecedo-Lopez CD, Kim-Lee JH, Hernandez D, Acosta SA, Borlongan CV (2014) Insulin-associated neuroinflammatory pathways as therapeutic targets for traumatic brain injury. Med Hypotheses 82:171–174.  https://doi.org/10.1016/j.mehy.2013.11.028 CrossRefPubMedGoogle Scholar
  19. 19.
    Chang EH, Adorjan I, Mundim MV, Sun B, Dizon ML, Szele FG (2016) Traumatic brain injury activation of the adult subventricular zone neurogenic niche. Front Neurosci 10:332.  https://doi.org/10.3389/fnins.2016.00332 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chao CC, Hu S, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-d-aspartate receptors. Brain Behav Immun 9:355–365CrossRefPubMedGoogle Scholar
  21. 21.
    Chatzipanteli K, Alonso OF, Kraydieh S, Dietrich WD (2000) Importance of posttraumatic hypothermia and hyperthermia on the inflammatory response after fluid percussion brain injury: biochemical and immunocytochemical studies. J Cereb Blood Flow Metab 20:531–542.  https://doi.org/10.1097/00004647-200003000-00012 CrossRefPubMedGoogle Scholar
  22. 22.
    Chatzipanteli K, Vitarbo E, Alonso OF, Bramlett HM, Dietrich WD (2012) Temporal profile of cerebrospinal fluid, plasma, and brain interleukin-6 after normothermic fluid-percussion brain injury: effect of secondary hypoxia. Ther Hypothermia Temp Manag 2:167–175.  https://doi.org/10.1089/ther.2012.0016 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cherry JD, Tripodis Y, Alvarez VE, Huber B, Kiernan PT, Daneshvar DH et al (2016) Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol Commun 4:112.  https://doi.org/10.1186/s40478-016-0382-8 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chesnut RM, Gautille T, Blunt BA, Klauber MR, Marshall LF (1998) Neurogenic hypotension in patients with severe head injuries. J Trauma Acute Care Surg 44:958–963CrossRefGoogle Scholar
  25. 25.
    Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2:492–516.  https://doi.org/10.1007/s12975-011-0125-x CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Claus CP, Tsuru-Aoyagi K, Adwanikar H, Walker B, Whetstone W, Noble-Haeusslein LJ (2010) Age is a determinant of the inflammatory response and loss of cortical volume after traumatic brain injury. Dev Neurosci 32:454–465CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Clausen F, Hanell A, Israelsson C, Hedin J, Ebendal T, Mir AK et al (2011) Neutralization of interleukin-1beta reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 34:110–123.  https://doi.org/10.1111/j.1460-9568.2011.07723.x CrossRefPubMedGoogle Scholar
  28. 28.
    Clevenger AC, Kim H, Salcedo E, Yonchek JC, Rodgers KM, Orfila JE et al (2018) Endogenous sex steroids dampen neuroinflammation and improve outcome of traumatic brain injury in mice. J Mol Neurosci 64:410–420.  https://doi.org/10.1007/s12031-018-1038-x CrossRefPubMedGoogle Scholar
  29. 29.
    Cohen MJ, Brohi K, Calfee CS, Rahn P, Chesebro BB, Christiaans SC et al (2009) Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care 13:R174–R174.  https://doi.org/10.1186/cc8152 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Collins-Praino LE, Arulsamy A, Katharesan V, Corrigan F (2018) The effect of an acute systemic inflammatory insult on the chronic effects of a single mild traumatic brain injury. Behav Brain Res 336:22–31.  https://doi.org/10.1016/j.bbr.2017.08.035 CrossRefPubMedGoogle Scholar
  31. 31.
    Coughlin JM, Wang Y, Munro CA, Ma S, Yue C, Chen S et al (2015) Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis 74:58–65.  https://doi.org/10.1016/j.nbd.2014.10.019 CrossRefPubMedGoogle Scholar
  32. 32.
    Csuka E, Hans VH, Ammann E, Trentz O, Kossmann T, Morganti-Kossmann MC (2000) Cell activation and inflammatory response following traumatic axonal injury in the rat. NeuroReport 11:2587–2590CrossRefPubMedGoogle Scholar
  33. 33.
    Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T (1999) IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol 101:211–221CrossRefPubMedGoogle Scholar
  34. 34.
    Cunningham AJ, Murray CA, O’Neill LA, Lynch MA, O’Connor JJ (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203:17–20CrossRefPubMedGoogle Scholar
  35. 35.
    Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC et al (2012) The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 5:6.  https://doi.org/10.3389/fnmol.2012.00006 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dalla Libera AL, Regner A, de Paoli J, Centenaro L, Martins TT, Simon D (2011) IL-6 polymorphism associated with fatal outcome in patients with severe traumatic brain injury. Brain Inj 25:365–369.  https://doi.org/10.3109/02699052.2011.556107 CrossRefPubMedGoogle Scholar
  37. 37.
    Dantzer R, O’Connor JC, Lawson MA, Kelley KW (2011) Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 36:426–436.  https://doi.org/10.1016/j.psyneuen.2010.09.012 CrossRefPubMedGoogle Scholar
  38. 38.
    Dardiotis E, Grigoriadis S, Hadjigeorgiou GM (2012) Genetic factors influencing outcome from neurotrauma. Curr Opin Psychiatry 25:231–238.  https://doi.org/10.1097/YCO.0b013e3283523c0e CrossRefPubMedGoogle Scholar
  39. 39.
    Das M, Mohapatra S, Mohapatra SS (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 9:236.  https://doi.org/10.1186/1742-2094-9-236 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    de Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29:1251–1261.  https://doi.org/10.1038/jcbfm.2009.46 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    De Simoni MG, De Luigi A, Gemma L, Sironi M, Manfridi A, Ghezzi P (1993) Modulation of systemic interleukin-6 induction by central interleukin-1. Am J Physiol 265:R739–742.  https://doi.org/10.1152/ajpregu.1993.265.4.R739 CrossRefPubMedGoogle Scholar
  42. 42.
    Devoto C, Arcurio L, Fetta J, Ley M, Rodney T, Kanefsky R et al (2017) Inflammation relates to chronic behavioral and neurological symptoms in military personnel with traumatic brain injuries. Cell Transplant 26:1169–1177.  https://doi.org/10.1177/0963689717714098 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K et al (2016) Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflamm 13:40.  https://doi.org/10.1186/s12974-016-0500-3 CrossRefGoogle Scholar
  44. 44.
    Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM et al (2015) IL-1beta associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia 56:991–1001.  https://doi.org/10.1111/epi.13100 CrossRefPubMedGoogle Scholar
  45. 45.
    Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJ et al (2014) Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the department of defense neurotrauma pharmacology workgroup. J Neurotrauma 31:135–158.  https://doi.org/10.1089/neu.2013.3019 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dietrich WD, Alonso O, Halley M, Busto R (1996) Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats. Neurosurgery 38:533–541 (discussion 541) PubMedGoogle Scholar
  47. 47.
    Dietrich WD, Bramlett HM (2007) Hyperthermia and central nervous system injury. In: Sharma HS (ed) Neurobiology of Hyperthermia. Progress in Brain Research, vol 162. Elsevier, Amsterdam, pp 201–217.  https://doi.org/10.1016/s0079-6123(06)62011-6 CrossRefGoogle Scholar
  48. 48.
    Donat CK, Scott G, Gentleman SM, Sastre M (2017) Microglial activation in traumatic brain injury. Front Aging Neurosci 9:208.  https://doi.org/10.3389/fnagi.2017.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Doran S, Ritzel R, Glaser E, Henry R, Faden A, Loane DJ (2018) Sex differences in acute neuroinflammation after experimental traumatic brain injury are mediated by infiltrating myeloid cells. J Neurotrauma.  https://doi.org/10.1089/neu.2018.6019 CrossRefPubMedGoogle Scholar
  50. 50.
    Drew PD, Chavis JA (2000) Female sex steroids: effects upon microglial cell activation. J Neuroimmunol 111:77–85CrossRefPubMedGoogle Scholar
  51. 51.
    Dukes SF, Bridges E, Johantgen M (2013) Occurrence of secondary insults of traumatic brain injury in patients transported by critical care air transport teams from Iraq/Afghanistan: 2003–2006. Mil Med 178:11–17CrossRefPubMedGoogle Scholar
  52. 52.
    Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029.  https://doi.org/10.1016/j.neuroscience.2008.06.052 CrossRefPubMedGoogle Scholar
  53. 53.
    Ekmark-Lewen S, Flygt J, Fridgeirsdottir GA, Kiwanuka O, Hanell A, Meyerson BJ et al (2016) Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1beta. Eur J Neurosci 43:1016–1033.  https://doi.org/10.1111/ejn.13190 CrossRefPubMedGoogle Scholar
  54. 54.
    Faden AI, Loane DJ (2015) Chronic neurodegeneration after traumatic brain injury: alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics 12:143–150.  https://doi.org/10.1007/s13311-014-0319-5 CrossRefPubMedGoogle Scholar
  55. 55.
    Falk S, Gotz M (2017) Glial control of neurogenesis. Curr Opin Neurobiol 47:188–195.  https://doi.org/10.1016/j.conb.2017.10.025 CrossRefPubMedGoogle Scholar
  56. 56.
    Feng JZ, Wang WY, Zeng J, Zhou ZY, Peng J, Yang H (2017) Optimization of brain metabolism using metabolic-targeted therapeutic hypothermia can reduce mortality from traumatic brain injury. J Trauma Acute Care Surg 83:296–304.  https://doi.org/10.1097/TA.0000000000001522 CrossRefPubMedGoogle Scholar
  57. 57.
    Fenn AM, Gensel JC, Huang Y, Popovich PG, Lifshitz J, Godbout JP (2014) Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol Psychiatry 76:575–584.  https://doi.org/10.1016/j.biopsych.2013.10.014 CrossRefPubMedGoogle Scholar
  58. 58.
    Filiano AJ, Gadani SP, Kipnis J (2017) How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci 18:375–384.  https://doi.org/10.1038/nrn.2017.39 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg 80:301–313.  https://doi.org/10.3171/jns.1994.80.2.0301 CrossRefPubMedGoogle Scholar
  60. 60.
    Frugier T, Morganti-Kossmann MC, O’Reilly D, McLean CA (2010) In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma 27:497–507.  https://doi.org/10.1089/neu.2009.1120 CrossRefPubMedGoogle Scholar
  61. 61.
    Glushakova OY, Johnson D, Hayes RL (2014) Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J Neurotrauma 31:1180–1193.  https://doi.org/10.1089/neu.2013.3080 CrossRefPubMedGoogle Scholar
  62. 62.
    Günther M, Plantman S, Davidsson J, Angéria M, Mathiesen T, Risling M (2015) COX-2 regulation and TUNEL-positive cell death differ between genders in the secondary inflammatory response following experimental penetrating focal brain injury in rats. Acta Neurochir (Wien) 157:649–659CrossRefGoogle Scholar
  63. 63.
    Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Cantu RC, Randolph C et al (2005) Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery 57:719–726 (discussion 719–726) CrossRefPubMedGoogle Scholar
  64. 64.
    Haber M, James J, Kim J, Sangobowale M, Irizarry R, Ho J et al (2017) Minocycline plus N-acetylcysteine induces remyelination, synergistically protects oligodendrocytes, and modifies neuroinflammation in a rat model of mild traumatic brain injury. J Cereb Blood Flow.  https://doi.org/10.1177/0271678x17718106 CrossRefGoogle Scholar
  65. 65.
    Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A et al (2007) Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 25:231–238.  https://doi.org/10.1111/j.1460-9568.2006.05275.x CrossRefPubMedGoogle Scholar
  66. 66.
    Hadjigeorgiou GM, Paterakis K, Dardiotis E, Dardioti M, Aggelakis K, Tasiou A et al (2005) IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology 65:1077–1082.  https://doi.org/10.1212/01.wnl.0000178890.93795.0e CrossRefPubMedGoogle Scholar
  67. 67.
    Hazeldine J, Lord JM, Belli A (2015) Traumatic brain injury and peripheral immune suppression: primer and prospectus. Front Neurol 6:235.  https://doi.org/10.3389/fneur.2015.00235 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    He J, Evans CO, Hoffman SW, Oyesiku NM, Stein DG (2004) Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol 189:404–412.  https://doi.org/10.1016/j.expneurol.2004.06.008 CrossRefPubMedGoogle Scholar
  69. 69.
    Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC (2010) Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. J Neurotrauma 27:1997–2010.  https://doi.org/10.1089/neu.2009.1245 CrossRefPubMedGoogle Scholar
  70. 70.
    Hellewell SC, Yan EB, Alwis DS, Bye N, Morganti-Kossmann MC (2013) Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor. J Neuroinflamm 10:156.  https://doi.org/10.1186/1742-2094-10-156 CrossRefGoogle Scholar
  71. 71.
    Helmy A, Antoniades CA, Guilfoyle MR, Carpenter KL, Hutchinson PJ (2012) Principal component analysis of the cytokine and chemokine response to human traumatic brain injury. PLoS One 7:e39677.  https://doi.org/10.1371/journal.pone.0039677 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ (2014) Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab 34:845–851.  https://doi.org/10.1038/jcbfm.2014.23 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ (2016) Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury. J Cereb Blood Flow Metab 36:1434–1448.  https://doi.org/10.1177/0271678X15620204 CrossRefPubMedGoogle Scholar
  74. 74.
    Hunt RF, Scheff SW, Smith BN (2009) Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 215:243–252.  https://doi.org/10.1016/j.expneurol.2008.10.005 CrossRefPubMedGoogle Scholar
  75. 75.
    Irrera N, Pizzino G, Calo M, Pallio G, Mannino F, Fama F et al (2017) Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury. Front Pharmacol 8:459.  https://doi.org/10.3389/fphar.2017.00459 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ismael S, Nasoohi S, Ishrat T (2018) MCC950, the selective inhibitor of nucleotide oligomerization domain-like receptor protein-3 inflammasome, protects mice against traumatic brain injury. J Neurotrauma 35:1294–1303.  https://doi.org/10.1089/neu.2017.5344 CrossRefPubMedGoogle Scholar
  77. 77.
    Jayakumar AR, Tong XY, Ruiz-Cordero R, Bregy A, Bethea JR, Bramlett HM et al (2014) Activation of NF-kappaB mediates astrocyte swelling and brain edema in traumatic brain injury. J Neurotrauma 31:1249–1257.  https://doi.org/10.1089/neu.2013.3169 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11:361–370.  https://doi.org/10.1038/nrn2808 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43.  https://doi.org/10.1016/j.expneurol.2012.01.013 CrossRefPubMedGoogle Scholar
  80. 80.
    Jordan BD (2000) Chronic traumatic brain injury associated with boxing. Semin Neurol 20:179–185.  https://doi.org/10.1055/s-2000-9826 CrossRefPubMedGoogle Scholar
  81. 81.
    Juengst SB, Kumar RG, Failla MD, Goyal A, Wagner AK (2015) Acute inflammatory biomarker profiles predict depression risk following moderate to severe traumatic brain injury. J Head Trauma Rehabil 30:207–218.  https://doi.org/10.1097/HTR.0000000000000031 CrossRefPubMedGoogle Scholar
  82. 82.
    Jullienne A, Salehi A, Affeldt B, Baghchechi M, Haddad E, Avitua A et al (2018) Male and female mice exhibit divergent responses of the cortical vasculature to traumatic brain injury. J Neurotrauma 35:1646–1658.  https://doi.org/10.1089/neu.2017.5547 CrossRefPubMedGoogle Scholar
  83. 83.
    Kelley BJ, Lifshitz J, Povlishock JT (2007) Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol Exp Neurol 66:989–1001.  https://doi.org/10.1097/NEN.0b013e3181588245 CrossRefPubMedGoogle Scholar
  84. 84.
    Kenney MJ, Ganta CK (2014) Autonomic nervous system and immune system interactions. Compr Physiol 4:1177–1200.  https://doi.org/10.1002/cphy.c130051 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kilbaugh TJ, Lvova M, Karlsson M, Zhang Z, Leipzig J, Wallace DC et al (2015) Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS One 10:e0130927.  https://doi.org/10.1371/journal.pone.0130927 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kim L, Schuster J, Holena DN, Sims CA, Levine J, Pascual JL (2014) Early initiation of prophylactic heparin in severe traumatic brain injury is associated with accelerated improvement on brain imaging. J Emerg Trauma Shock 7:141–148.  https://doi.org/10.4103/0974-2700.136846 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kinoshita K (2016) Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care 4:29.  https://doi.org/10.1186/s40560-016-0138-3 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Knoblach SM, Faden AI (2000) Cortical interleukin-1 beta elevation after traumatic brain injury in the rat: no effect of two selective antagonists on motor recovery. Neurosci Lett 289:5–8CrossRefPubMedGoogle Scholar
  89. 89.
    Knoblach SM, Fan L, Faden AI (1999) Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol 95:115–125CrossRefPubMedGoogle Scholar
  90. 90.
    Kochanek PM, Bramlett HM, Shear DA, Dixon CE, Mondello S, Dietrich WD et al (2016) Synthesis of findings, current investigations, and future directions: operation brain trauma therapy. J Neurotrauma 33:606–614.  https://doi.org/10.1089/neu.2015.4133 CrossRefPubMedGoogle Scholar
  91. 91.
    Kooij G, Kopplin K, Blasig R, Stuiver M, Koning N, Goverse G et al (2014) Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathol 128:267–277.  https://doi.org/10.1007/s00401-013-1227-1 CrossRefPubMedGoogle Scholar
  92. 92.
    Kumar A, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ (2016) Microglial/Macrophage polarization dynamics following traumatic brain injury. J Neurotrauma 33:1732–1750.  https://doi.org/10.1089/neu.2015.4268 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ (2013) Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol Aging 34:1397–1411.  https://doi.org/10.1016/j.neurobiolaging.2012.11.013 CrossRefPubMedGoogle Scholar
  94. 94.
    Kumar RG, Boles JA, Wagner AK (2015) Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehabil 30:369–381.  https://doi.org/10.1097/HTR.0000000000000067 CrossRefPubMedGoogle Scholar
  95. 95.
    Lafrenaye AD, Todani M, Walker SA, Povlishock JT (2015) Microglia processes associate with diffusely injured axons following mild traumatic brain injury in the micro pig. J Neuroinflamm 12:186.  https://doi.org/10.1186/s12974-015-0405-6 CrossRefGoogle Scholar
  96. 96.
    Lee SW, Gajavelli S, Spurlock MS, Andreoni C, de Rivero Vaccari JP, Bullock MR et al (2018) Microglial inflammasome activation in penetrating ballistic-like brain injury. J Neurotrauma 35:1681–1693.  https://doi.org/10.1089/neu.2017.5530 CrossRefPubMedGoogle Scholar
  97. 97.
    Lenz KM, McCarthy MM (2015) A starring role for microglia in brain sex differences. Neuroscientist 21:306–321.  https://doi.org/10.1177/1073858414536468 CrossRefPubMedGoogle Scholar
  98. 98.
    Li B, Concepcion K, Meng X, Zhang L (2017) Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol 159:50–68.  https://doi.org/10.1016/j.pneurobio.2017.10.006 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C et al (2009) Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1beta level after traumatic brain injury. Neurosurgery 65:179–185.  https://doi.org/10.1227/01.neu.0000346272.76537.dc (discussion 185–176) CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Li S, Marks JA, Eisenstadt R, Kumasaka K, Samadi D, Johnson VE et al (2015) Enoxaparin ameliorates post-traumatic brain injury edema and neurologic recovery, reducing cerebral leukocyte endothelial interactions and vessel permeability in vivo. J Trauma Acute Care Surg 79:78–84.  https://doi.org/10.1097/TA.0000000000000697 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Li Y, Li Y, Li X, Zhang S, Zhao J, Zhu X et al (2017) Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLoS One 12:e0169650.  https://doi.org/10.1371/journal.pone.0169650 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Li ZM, Xiao YL, Zhu JX, Geng FY, Guo CJ, Chong ZL et al (2016) Recombinant human erythropoietin improves functional recovery in patients with severe traumatic brain injury: a randomized, double blind and controlled clinical trial. Clin Neurol Neurosurg 150:80–83.  https://doi.org/10.1016/j.clineuro.2016.09.001 CrossRefPubMedGoogle Scholar
  103. 103.
    Liesz A, Dalpke A, Mracsko E, Antoine DJ, Roth S, Zhou W et al (2015) DAMP Signaling is a key pathway inducing immune modulation after brain injury. J Neurosci 35:583–598.  https://doi.org/10.1523/JNEUROSCI.2439-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Lieutaud T, Andrews PJ, Rhodes JK, Williamson R (2008) Characterization of the pharmacokinetics of human recombinant erythropoietin in blood and brain when administered immediately after lateral fluid percussion brain injury and its pharmacodynamic effects on IL-1beta and MIP-2 in rats. J Neurotrauma 25:1179–1185.  https://doi.org/10.1089/neu.2008.0591 CrossRefPubMedGoogle Scholar
  105. 105.
    Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W et al (2013) Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res 38:2072–2083.  https://doi.org/10.1007/s11064-013-1115-z CrossRefPubMedGoogle Scholar
  106. 106.
    Liu YW, Li S, Dai SS (2018) Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflamm 15:146.  https://doi.org/10.1186/s12974-018-1173-x CrossRefGoogle Scholar
  107. 107.
    Lo TY, Jones PA, Minns RA (2009) Pediatric brain trauma outcome prediction using paired serum levels of inflammatory mediators and brain-specific proteins. J Neurotrauma 26:1479–1487.  https://doi.org/10.1089/neu.2008-0753 CrossRefPubMedGoogle Scholar
  108. 108.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342.  https://doi.org/10.1038/nri1594 CrossRefPubMedGoogle Scholar
  109. 109.
    Maas AI, Murray G, Henney H 3rd, Kassem N, Legrand V, Mangelus M et al (2006) Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 5:38–45.  https://doi.org/10.1016/S1474-4422(05)70253-2 CrossRefPubMedGoogle Scholar
  110. 110.
    Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A et al (2017) Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 16:987–1048.  https://doi.org/10.1016/S1474-4422(17)30371-X CrossRefPubMedGoogle Scholar
  111. 111.
    Manley G, Knudson MM, Morabito D, Damron S, Erickson V, Pitts L (2001) Hypotension, hypoxia, and head injury - Frequency, duration, and consequences. Arch Surg 136:1118–1123.  https://doi.org/10.1001/archsurg.136.10.1118 CrossRefPubMedGoogle Scholar
  112. 112.
    McHugh GS, Engel DC, Butcher I, Steyerberg EW, Lu J, Mushkudiani N et al (2007) Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma 24:287–293.  https://doi.org/10.1089/neu.2006.0031 CrossRefPubMedGoogle Scholar
  113. 113.
    Mez J, Daneshvar DH, Kiernan PT, Abdolmohammadi B, Alvarez VE, Huber BR et al (2017) Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA 318:360–370.  https://doi.org/10.1001/jama.2017.8334 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Minambres E, Cemborain A, Sanchez-Velasco P, Gandarillas M, Diaz-Reganon G, Sanchez-Gonzalez U et al (2003) Correlation between transcranial interleukin-6 gradient and outcome in patients with acute brain injury. Crit Care Med 31:933–938.  https://doi.org/10.1097/01.CCM.0000055370.66389.59 CrossRefPubMedGoogle Scholar
  115. 115.
    Miyamoto A, Wake H, Moorhouse AJ, Nabekura J (2013) Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci 7:70.  https://doi.org/10.3389/fncel.2013.00070 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Morganti-Kossmann MC, Yan E, Bye N (2010) Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury 41(Suppl 1):S10–13.  https://doi.org/10.1016/j.injury.2010.03.032 CrossRefPubMedGoogle Scholar
  117. 117.
    Morganti JM, Riparip LK, Chou A, Liu S, Gupta N, Rosi S (2016) Age exacerbates the CCR2/5-mediated neuroinflammatory response to traumatic brain injury. J Neuroinflamm 13:80.  https://doi.org/10.1186/s12974-016-0547-1 CrossRefGoogle Scholar
  118. 118.
    Morganti JM, Riparip LK, Rosi S (2016) Call Off the Dog(ma): M1/M2 polarization is concurrent following traumatic brain injury. PLoS One 11:e0148001.  https://doi.org/10.1371/journal.pone.0148001 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Mortezaee K, Khanlarkkhani N, Beyer C, Zendedel A (2018) Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol 233:5160–5169CrossRefPubMedGoogle Scholar
  120. 120.
    Mrakovcic-Sutic I, Tokmadzic VS, Laskarin G, Mahmutefendic H, Lucin P, Zupan Z et al (2010) Early changes in frequency of peripheral blood lymphocyte subpopulations in severe traumatic brain-injured patients. Scand J Immunol 72:57–65.  https://doi.org/10.1111/j.1365-3083.2010.02407.x CrossRefPubMedGoogle Scholar
  121. 121.
    Mrozek S, Luzi A, Gonzalez L, Kerhuel L, Fourcade O, Geeraerts T (2016) Cerebral and extracerebral vulnerability to hypoxic insults after diffuse traumatic brain injury in rats. Brain Res 1646:334–341.  https://doi.org/10.1016/j.brainres.2016.06.007 CrossRefPubMedGoogle Scholar
  122. 122.
    Nagata K, Browne KD, Suto Y, Kumasaka K, Cognetti J, Johnson VE et al (2017) Early heparin administration after traumatic brain injury: prolonged cognitive recovery associated with reduced cerebral edema and neutrophil sequestration. J Trauma Acute Care Surg 83:406–412.  https://doi.org/10.1097/TA.0000000000001590 CrossRefPubMedGoogle Scholar
  123. 123.
    Nagata K, Suto Y, Cognetti J, Browne KD, Kumasaka K, Johnson VE et al (2018) Early low-anticoagulant desulfated heparin after traumatic brain injury: reduced brain edema and leukocyte mobilization is associated with improved watermaze learning ability weeks after injury. J Trauma Acute Care Surg 84:727–735.  https://doi.org/10.1097/TA.0000000000001819 CrossRefPubMedGoogle Scholar
  124. 124.
    Ndode-Ekane XE, Matthiesen L, Banuelos-Cabrera I, Palminha CAP, Pitkanen A (2018) T-cell infiltration into the perilesional cortex is long-lasting and associates with poor somatomotor recovery after experimental traumatic brain injury. Restor Neurol Neurosci.  https://doi.org/10.3233/rnn-170811 CrossRefPubMedGoogle Scholar
  125. 125.
    Newell E, Shellington DK, Simon DW, Bell MJ, Kochanek PM, Feldman K et al (2015) Cerebrospinal fluid markers of macrophage and lymphocyte activation after traumatic brain injury in children. Pediatr Crit Care Med 16:549–557CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Ng SY, Semple BD, Morganti-Kossmann MC, Bye N (2012) Attenuation of microglial activation with minocycline is not associated with changes in neurogenesis after focal traumatic brain injury in adult mice. J Neurotrauma 29:1410–1425.  https://doi.org/10.1089/neu.2011.2188 CrossRefPubMedGoogle Scholar
  127. 127.
    Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y et al (2015) Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 386:2499–2506.  https://doi.org/10.1016/s0140-6736(15)00386-4 CrossRefPubMedGoogle Scholar
  128. 128.
    Nicklin MJ, Hughes DE, Barton JL, Ure JM, Duff GW (2000) Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med 191:303–312CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Nissen JC (2017) Microglial function across the spectrum of age and gender. Int J Mol Sci.  https://doi.org/10.3390/ijms18030561 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    O’Donovan A, Chao LL, Paulson J, Samuelson KW, Shigenaga JK, Grunfeld C et al (2015) Altered inflammatory activity associated with reduced hippocampal volume and more severe posttraumatic stress symptoms in Gulf War veterans. Psychoneuroendocrinology 51:557–566.  https://doi.org/10.1016/j.psyneuen.2014.11.010 CrossRefPubMedGoogle Scholar
  131. 131.
    Ojo JO, Mouzon B, Greenberg MB, Bachmeier C, Mullan M, Crawford F (2013) Repetitive mild traumatic brain injury augments tau pathology and glial activation in aged hTau mice. J Neuropathol Exp Neurol 72:137–151.  https://doi.org/10.1097/NEN.0b013e3182814cdf CrossRefPubMedGoogle Scholar
  132. 132.
    Okuma Y, Liu K, Wake H, Zhang J, Maruo T, Date I et al (2012) Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol 72:373–384.  https://doi.org/10.1002/ana.23602 CrossRefPubMedGoogle Scholar
  133. 133.
    Omalu BI, DeKosky ST, Hamilton RL, Minster RL, Kamboh MI, Shakir AM et al (2006) Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery 59:1086–1092.  https://doi.org/10.1227/01.neu.0000245601.69451.27 (discussion 1092–1083) CrossRefPubMedGoogle Scholar
  134. 134.
    Pachter JS, de Vries HE, Fabry Z (2003) The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 62:593–604CrossRefPubMedGoogle Scholar
  135. 135.
    Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J et al (2015) Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2:1002–1012.  https://doi.org/10.1016/S2215-0366(15)00309-0 CrossRefPubMedGoogle Scholar
  136. 136.
    Pedrazzi M, Patrone M, Passalacqua M, Ranzato E, Colamassaro D, Sparatore B et al (2007) Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling. J Immunol (Baltim Md 1950) 179:8525–8532CrossRefGoogle Scholar
  137. 137.
    Piao CS, Stoica BA, Wu J, Sabirzhanov B, Zhao Z, Cabatbat R et al (2013) Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis 54:252–263.  https://doi.org/10.1016/j.nbd.2012.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Pleines UE, Stover JF, Kossmann T, Trentz O, Morganti-Kossmann MC (1998) Soluble ICAM-1 in CSF coincides with the extent of cerebral damage in patients with severe traumatic brain injury. J Neurotrauma 15:399–409.  https://doi.org/10.1089/neu.1998.15.399 CrossRefPubMedGoogle Scholar
  139. 139.
    Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383.  https://doi.org/10.1002/ana.22455 CrossRefPubMedGoogle Scholar
  140. 140.
    Rancan M, Otto VI, Hans VH, Gerlach I, Jork R, Trentz O et al (2001) Upregulation of ICAM-1 and MCP-1 but not of MIP-2 and sensorimotor deficit in response to traumatic axonal injury in rats. J Neurosci Res 63:438–446.  https://doi.org/10.1002/1097-4547(20010301)63:5%3c438:AID-JNR1039%3e3.0.CO;2-P CrossRefPubMedGoogle Scholar
  141. 141.
    Rao KV, Reddy PV, Curtis KM, Norenberg MD (2011) Aquaporin-4 expression in cultured astrocytes after fluid percussion injury. J Neurotrauma 28:371–381.  https://doi.org/10.1089/neu.2010.1705 CrossRefPubMedGoogle Scholar
  142. 142.
    Rhind SG, Crnko NT, Baker AJ, Morrison LJ, Shek PN, Scarpelini S et al (2010) Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients. J Neuroinflamm 7:5.  https://doi.org/10.1186/1742-2094-7-5 CrossRefGoogle Scholar
  143. 143.
    Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57:419–425CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G et al (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364:1321–1328.  https://doi.org/10.1016/s0140-6736(04)17188-2 CrossRefPubMedGoogle Scholar
  145. 145.
    Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC et al (2014) Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA 312:36–47.  https://doi.org/10.1001/jama.2014.6490 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Robinson C, Apgar C, Shapiro LA (2016) Astrocyte hypertrophy contributes to aberrant neurogenesis after traumatic brain injury. Neural Plast 2016:1347987.  https://doi.org/10.1155/2016/1347987 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Roof RL, Duvdevani R, Stein DG (1993) Gender influences outcome of brain injury: progesterone plays a protective role. Brain Res 607:333–336.  https://doi.org/10.1016/0006-8993(93)91526-X CrossRefPubMedGoogle Scholar
  148. 148.
    Roselli F, Karasu E, Volpe C, Huber-Lang M (2018) Medusa’s Head: the complement system in traumatic brain and spinal cord injury. J Neurotrauma 35:226–240.  https://doi.org/10.1089/neu.2017.5168 CrossRefPubMedGoogle Scholar
  149. 149.
    Saletti PG, Ali I, Casillas-Espinosa PM, Semple BD, Lisgaras C, Moshe SL et al (2018) In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol Dis.  https://doi.org/10.1016/j.nbd.2018.06.017 CrossRefPubMedGoogle Scholar
  150. 150.
    Scherbel U, Raghupathi R, Nakamura M, Saatman KE, Trojanowski JQ, Neugebauer E et al (1999) Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci USA 96:8721–8726CrossRefPubMedGoogle Scholar
  151. 151.
    Schober K, Ondruschka B, Dreßler J, Abend M (2015) Detection of hypoxia markers in the cerebellum after a traumatic frontal cortex injury: a human postmortem gene expression analysis. Int J Legal Med 129:701–707.  https://doi.org/10.1007/s00414-014-1129-3 CrossRefPubMedGoogle Scholar
  152. 152.
    Schroeppel TJ, Fischer PE, Zarzaur BL, Magnotti LJ, Clement LP, Fabian TC et al (2010) Beta-adrenergic blockade and traumatic brain injury: protective? J Trauma 69:776–782.  https://doi.org/10.1097/TA.0b013e3181e981b8 CrossRefPubMedGoogle Scholar
  153. 153.
    Schwab JM, Zhang Y, Kopp MA, Brommer B, Popovich PG (2014) The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp Neurol 258:121–129.  https://doi.org/10.1016/j.expneurol.2014.04.023 CrossRefPubMedGoogle Scholar
  154. 154.
    Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16.  https://doi.org/10.1016/j.pneurobio.2013.04.001 CrossRefPubMedGoogle Scholar
  155. 155.
    Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC (2010) Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 30:769–782.  https://doi.org/10.1038/jcbfm.2009.262 CrossRefPubMedGoogle Scholar
  156. 156.
    Semple BD, Bye N, Ziebell JM, Morganti-Kossmann MC (2010) Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis 40:394–403.  https://doi.org/10.1016/j.nbd.2010.06.015 CrossRefPubMedGoogle Scholar
  157. 157.
    Semple BD, Frugier T, Morganti-Kossmann MC (2010) CCL2 modulates cytokine production in cultured mouse astrocytes. J Neuroinflammation 7:67.  https://doi.org/10.1186/1742-2094-7-67 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Semple BD, Kossmann T, Morganti-Kossmann MC (2010) Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab 30:459–473.  https://doi.org/10.1038/jcbfm.2009.240 CrossRefPubMedGoogle Scholar
  159. 159.
    Semple BD, O’Brien TJ, Gimlin K, Wright DK, Kim SE, Casillas-Espinosa PM et al (2017) Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. J Neurosci 37:7864–7877.  https://doi.org/10.1523/JNEUROSCI.0982-17.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Semple BD, Trivedi A, Gimlin K, Noble-Haeusslein LJ (2014) Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiol Dis 74:263–280CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC (2018) Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis.  https://doi.org/10.1016/j.nbd.2018.07.018 CrossRefPubMedGoogle Scholar
  162. 162.
    Serrats J, Schiltz JC, Garcia-Bueno B, van Rooijen N, Reyes TM, Sawchenko PE (2010) Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron 65:94–106.  https://doi.org/10.1016/j.neuron.2009.11.032 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Seyfried D, Han Y, Lu D, Chen J, Bydon A, Chopp M (2004) Improvement in neurological outcome after administration of atorvastatin following experimental intracerebral hemorrhage in rats. J Neurosurg 101:104–107.  https://doi.org/10.3171/jns.2004.101.1.0104 CrossRefPubMedGoogle Scholar
  164. 164.
    Shaefi S, Mittel AM, Hyam JA, Boone MD, Chen CC, Kasper EM (2016) Hypothermia for severe traumatic brain injury in adults: recent lessons from randomized controlled trials. Surg Neurol Int 7:103.  https://doi.org/10.4103/2152-7806.194816 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Shein SL, Shellington DK, Exo JL, Jackson TC, Wisniewski SR, Jackson EK et al (2014) Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice. J Neurotrauma 31:1386–1395.  https://doi.org/10.1089/neu.2013.2985 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Shiozaki T, Hayakata T, Tasaki O, Hosotubo H, Fuijita K, Mouri T et al (2005) Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock 23:406–410.  https://doi.org/10.1097/01.shk.0000161385.62758.24 CrossRefPubMedGoogle Scholar
  167. 167.
    Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10:119–130CrossRefPubMedGoogle Scholar
  168. 168.
    Sidaros A, Skimminge A, Liptrot MG, Sidaros K, Engberg AW, Herning M et al (2009) Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates. Neuroimage 44:1–8.  https://doi.org/10.1016/j.neuroimage.2008.08.030 CrossRefPubMedGoogle Scholar
  169. 169.
    Sillesen M, Rasmussen LS, Jin G, Jepsen CH, Imam A, Hwabejire JO et al (2014) Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model. J Trauma Acute Care Surg 76:12–19.  https://doi.org/10.1097/TA.0b013e3182aaa675 CrossRefPubMedGoogle Scholar
  170. 170.
    Simon DW, Aneja RK, Alexander H, Bell MJ, Bayir H, Kochanek PM et al (2018) Minocycline attenuates high mobility group box 1 translocation, microglial activation, and thalamic neurodegeneration after traumatic brain injury in post-natal day 17 rats. J Neurotrauma 35:130–138.  https://doi.org/10.1089/neu.2017.5093 CrossRefPubMedGoogle Scholar
  171. 171.
    Simon DW, McGeachy MJ, Bayir H, Clark RS, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13:171–191.  https://doi.org/10.1038/nrneurol.2017.13 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Singhal A, Baker AJ, Hare GM, Reinders FX, Schlichter LC, Moulton RJ (2002) Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J Neurotrauma 19:929–937.  https://doi.org/10.1089/089771502320317087 CrossRefPubMedGoogle Scholar
  173. 173.
    Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD et al (2014) A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med 371:2467–2476.  https://doi.org/10.1056/NEJMoa1411090 CrossRefPubMedGoogle Scholar
  174. 174.
    Skrifvars MB, Bailey M, French C, Presneill J, Nichol A, Little L et al (2017) Erythropoietin in patients with traumatic brain injury and extracranial injury-A post hoc analysis of the erythropoietin traumatic brain injury trial. J Trauma Acute Care Surg 83:449–456.  https://doi.org/10.1097/ta.0000000000001594 CrossRefPubMedGoogle Scholar
  175. 175.
    Smith DH, Chen XH, Pierce JE, Wolf JA, Trojanowski JQ, Graham DI et al (1997) Progressive atrophy and neuron death for 1 year following brain trauma in the rat. J Neurotrauma 14:715–727.  https://doi.org/10.1089/neu.1997.14.715 CrossRefPubMedGoogle Scholar
  176. 176.
    Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35:298–306CrossRefPubMedGoogle Scholar
  177. 177.
    Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16:249–263.  https://doi.org/10.1038/nrn3898 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Spani CB, Braun DJ, Van Eldik LJ (2018) Sex-related responses after traumatic brain injury: Considerations for preclinical modeling. Front Neuroendocrinol 1:1.  https://doi.org/10.1016/j.yfrne.2018.03.006 CrossRefGoogle Scholar
  179. 179.
    Stahel PF, Shohami E, Younis FM, Kariya K, Otto VI, Lenzlinger PM et al (2000) Experimental closed head injury: analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J Cereb Blood Flow Metab 20:369–380.  https://doi.org/10.1097/00004647-200002000-00019 CrossRefPubMedGoogle Scholar
  180. 180.
    Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161.  https://doi.org/10.1038/ni.1836 CrossRefPubMedGoogle Scholar
  181. 181.
    Stocchetti N, Furlan A, Volta F (1996) Hypoxemia and arterial hypotension at the accident scene in head injury. J Trauma 40:764–767CrossRefPubMedGoogle Scholar
  182. 182.
    Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212.  https://doi.org/10.1002/glia.10319 CrossRefPubMedGoogle Scholar
  183. 183.
    Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, Mattson MP et al (1999) Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 19:6248–6256CrossRefPubMedGoogle Scholar
  184. 184.
    Sun D (2016) Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury. Exp Neurol 275(Pt 3):405–410.  https://doi.org/10.1016/j.expneurol.2015.04.017 CrossRefPubMedGoogle Scholar
  185. 185.
    Sun D, Daniels TE, Rolfe A, Waters M, Hamm R (2015) Inhibition of injury-induced cell proliferation in the dentate gyrus of the hippocampus impairs spontaneous cognitive recovery after traumatic brain injury. J Neurotrauma 32:495–505.  https://doi.org/10.1089/neu.2014.3545 CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Sun M, Brady RD, Wright DK, Kim HA, Zhang SR, Sobey CG (2017) Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain Behav Immun 66:359–371.  https://doi.org/10.1016/j.bbi.2017.08.005 CrossRefPubMedGoogle Scholar
  187. 187.
    Tajiri N, Hernandez D, Acosta S, Shinozuka K, Ishikawa H, Ehrhart J et al (2014) Suppressed cytokine expression immediately following traumatic brain injury in neonatal rats indicates an expeditious endogenous anti-inflammatory response. Brain Res 1559:65–71.  https://doi.org/10.1016/j.brainres.2014.02.041 CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Tanriverdi F, De Bellis A, Bizzarro A, Sinisi AA, Bellastella G, Pane E et al (2008) Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol 159:7–13.  https://doi.org/10.1530/EJE-08-0050 CrossRefPubMedGoogle Scholar
  189. 189.
    Taylor AN, Tio DL, Paydar A, Sutton RL (2018) Sex differences in thermal, stress, and inflammatory responses to minocycline administration in rats with traumatic brain injury. J Neurotrauma 35:630–638.  https://doi.org/10.1089/neu.2017.5238 CrossRefPubMedGoogle Scholar
  190. 190.
    Tehranian R, Andell-Jonsson S, Beni SM, Yatsiv I, Shohami E, Bartfai T et al (2002) Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J Neurotrauma 19:939–951.  https://doi.org/10.1089/089771502320317096 CrossRefPubMedGoogle Scholar
  191. 191.
    Thelin EP, Tajsic T, Zeiler FA, Menon DK, Hutchinson PJA, Carpenter KLH et al (2017) Monitoring the neuroinflammatory response following acute brain injury. Front Neurol 8:351.  https://doi.org/10.3389/fneur.2017.00351 CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Thompson HJ, Hoover RC, Tkacs NC, Saatman KE, McIntosh TK (2005) Development of posttraumatic hyperthermia after traumatic brain injury in rats is associated with increased periventricular inflammation. J Cereb Blood Flow Metab 25:163–176.  https://doi.org/10.1038/sj.jcbfm.9600008 CrossRefPubMedGoogle Scholar
  193. 193.
    Timaru-Kast R, Luh C, Gotthardt P, Huang C, Schafer MK, Engelhard K (2012) Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS One 7:pe43829CrossRefGoogle Scholar
  194. 194.
    Tomura S, de Rivero Vaccari JP, Keane RW, Bramlett HM, Dietrich WD (2012) Effects of therapeutic hypothermia on inflammasome signaling after traumatic brain injury. J Cereb Blood Flow Metab 32:1939–1947.  https://doi.org/10.1038/jcbfm.2012.99 CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Toulmond S, Rothwell NJ (1995) Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat. Brain Res 671:261–266CrossRefPubMedGoogle Scholar
  196. 196.
    Utagawa A, Truettner JS, Dietrich WD, Bramlett HM (2008) Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Exp Neurol 211:283–291.  https://doi.org/10.1016/j.expneurol.2008.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    VanLandingham JW, Cekic M, Cutler S, Hoffman SW, Stein DG (2007) Neurosteroids reduce inflammation after TBI through CD55 induction. Neurosci Lett 425:94–98.  https://doi.org/10.1016/j.neulet.2007.08.045 CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Velosky AG, Tucker LB, Fu AH, Liu J, McCabe JT (2017) Cognitive performance of male and female C57Bl/6 J mice after repetitive concussive brain injuries. Behav Brain Res 324:115–124CrossRefPubMedGoogle Scholar
  199. 199.
    Vezzani A (2005) Inflammation and epilepsy. Epilepsy Curr 5:1–6.  https://doi.org/10.1111/j.1535-7597.2005.05101.x CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Villapol S, Loane DJ, Burns MP (2017) Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia 65:1423–1438.  https://doi.org/10.1002/glia.23171 CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Wallisch JS, Simon DW, Bayir H, Bell MJ, Kochanek PM, Clark RSB (2017) Cerebrospinal fluid NLRP3 is increased after severe traumatic brain injury in infants and children. Neurocrit Care 27:44–50.  https://doi.org/10.1007/s12028-017-0378-7 CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Wang B, Jin K (2015) Current perspectives on the link between neuroinflammation and neurogenesis. Metab Brain Dis 30:355–365.  https://doi.org/10.1007/s11011-014-9523-6 CrossRefPubMedGoogle Scholar
  203. 203.
    Waters RJ, Murray GD, Teasdale GM, Stewart J, Day I, Lee RJ et al (2013) Cytokine gene polymorphisms and outcome after traumatic brain injury. J Neurotrauma 30:1710–1716.  https://doi.org/10.1089/neu.2012.2792 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Weber DJ, Allette YM, Wilkes DS, White FA (2015) The HMGB1-RAGE inflammatory pathway: implications for brain injury-induced pulmonary dysfunction. Antioxid Redox Signal 23:1316–1328.  https://doi.org/10.1089/ars.2015.6299 CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Webster KM, Sun M, Crack P, O’Brien TJ, Shultz SR, Semple BD (2017) Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflamm 14:10.  https://doi.org/10.1186/s12974-016-0786-1 CrossRefGoogle Scholar
  206. 206.
    West TA, Sharp S (2014) Neuroendocrine dysfunction following mild TBI: when to screen for it. J Fam Pract 63:11–16PubMedGoogle Scholar
  207. 207.
    Whalen MJ, Carlos TM, Clark RS, Marion DW, DeKosky MS, Heineman S (1997) The relationship between brain temperature and neutrophil accumulation after traumatic brain injury in rats. Acta Neurochir Suppl 70:260–261PubMedGoogle Scholar
  208. 208.
    Wible EF, Laskowitz DT (2010) Statins in traumatic brain injury. Neurotherapeutics 7:62–73.  https://doi.org/10.1016/j.nurt.2009.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94:3195–3199CrossRefPubMedGoogle Scholar
  210. 210.
    Wofford KL, Harris JP, Browne KD, Brown DP, Grovola MR, Mietus CJ et al (2017) Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine. Exp Neurol 290:85–94.  https://doi.org/10.1016/j.expneurol.2017.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18.  https://doi.org/10.3389/fneur.2013.00018 CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M et al (2014) Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 371:2457–2466.  https://doi.org/10.1056/NEJMoa1404304 CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Xu X, Gao W, Cheng S, Yin D, Li F, Wu Y et al (2017) Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J Neuroinflamm 14:167.  https://doi.org/10.1186/s12974-017-0934-2 CrossRefGoogle Scholar
  214. 214.
    Xu X, Yin D, Ren H, Gao W, Li F, Sun D et al (2018) Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury. Neurobiol Dis 117:15–27.  https://doi.org/10.1016/j.nbd.2018.05.016 CrossRefPubMedGoogle Scholar
  215. 215.
    Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M et al (2015) Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflamm 12:110.  https://doi.org/10.1186/s12974-015-0328-2 CrossRefGoogle Scholar
  216. 216.
    Yan EB, Hellewell SC, Bellander BM, Agyapomaa DA, Morganti-Kossmann MC (2011) Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflamm 8:147.  https://doi.org/10.1186/1742-2094-8-147 CrossRefGoogle Scholar
  217. 217.
    Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D et al (2014) Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma 31:618–629.  https://doi.org/10.1089/neu.2013.3087 CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Yang SH, Gangidine M, Pritts TA, Goodman MD, Lentsch AB (2013) Interleukin-6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice. Shock 40:471–475.  https://doi.org/10.1097/shk.0000000000000037 CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Young E (2008) The anti-inflammatory effects of heparin and related compounds. Thromb Res 122:743–752.  https://doi.org/10.1016/j.thromres.2006.10.026 CrossRefPubMedGoogle Scholar
  220. 220.
    Zeiler FA, Thelin EP, Czosnyka M, Hutchinson PJ, Menon DK, Helmy A (2017) Cerebrospinal fluid and microdialysis cytokines in severe traumatic brain injury: a scoping systematic review. Front Neurol 8:331.  https://doi.org/10.3389/fneur.2017.00331 CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107.  https://doi.org/10.1038/nature08780 CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B et al (2014) Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 9:e92698.  https://doi.org/10.1371/journal.pone.0092698 CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Zhao M, Cribbs DH, Anderson AJ, Cummings BJ, Su JH, Wasserman AJ et al (2003) The induction of the TNFalpha death domain signaling pathway in Alzheimer’s disease brain. Neurochem Res 28:307–318CrossRefPubMedGoogle Scholar
  224. 224.
    Zhao WY, Chen SB, Wang JJ, Xu C, Zhao ML, Dong HJ et al (2017) Establishment of an ideal time window model in hypothermic-targeted temperature management after traumatic brain injury in rats. Brain Res 1669:141–149.  https://doi.org/10.1016/j.brainres.2017.06.006 CrossRefPubMedGoogle Scholar
  225. 225.
    Zw Zhou, Li F, Zt Zheng, Li Yd, Chen Th, Ww Gao et al (2017) Erythropoietin regulates immune/inflammatory reaction and improves neurological function outcomes in traumatic brain injury. Brain and Behav 7:e00827.  https://doi.org/10.1002/brb3.827 CrossRefGoogle Scholar
  226. 226.
    Ziebell JM, Bye N, Semple BD, Kossmann T, Morganti-Kossmann MC (2011) Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res 1414:94–105.  https://doi.org/10.1016/j.brainres.2011.07.056 CrossRefPubMedGoogle Scholar
  227. 227.
    Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7:22–30.  https://doi.org/10.1016/j.nurt.2009.10.016 CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Ziebell JM, Rowe RK, Muccigrosso MM, Reddaway JT, Adelson PD, Godbout JP et al (2017) Aging with a traumatic brain injury: could behavioral morbidities and endocrine symptoms be influenced by microglial priming? Brain Behav Immun 59:1–7.  https://doi.org/10.1016/j.bbi.2016.03.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Cristina Morganti-Kossmann
    • 1
    • 2
  • Bridgette D. Semple
    • 3
    • 4
  • Sarah C. Hellewell
    • 5
  • Nicole Bye
    • 6
  • Jenna M. Ziebell
    • 7
  1. 1.Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneAustralia
  2. 2.Australian New Zealand Intensive Care Research CentreMelbourneAustralia
  3. 3.Department of Neuroscience, Central Clinical SchoolThe Alfred Hospital, Monash UniversityMelbourneAustralia
  4. 4.Department of MedicineRoyal Melbourne Hospital, The University of MelbourneMelbourneAustralia
  5. 5.Sydney Translational Imaging LaboratoryCharles Perkins Centre, Heart Research Institute, University of SydneySydneyAustralia
  6. 6.Department of Pharmacy, College of Health and MedicineUniversity of TasmaniaSandy BayAustralia
  7. 7.Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartAustralia

Personalised recommendations