Advertisement

cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”

  • Daniel J. Brat
  • Kenneth Aldape
  • Howard Colman
  • Eric C. Holland
  • David N. Louis
  • Robert B. Jenkins
  • B. K. Kleinschmidt-DeMasters
  • Arie Perry
  • Guido Reifenberger
  • Roger Stupp
  • Andreas von Deimling
  • Michael Weller
Correspondence

Introduction

The World Health Organization (WHO) central nervous system tumor classification represents the primary source of updates on diagnostic classes, grades and criteria [17]. However, recent and ongoing advances in our understanding of brain tumor molecular pathogenesis warrant more rapid integration of this information into clinical practice between WHO updates. To accomplish this, cIMPACT-NOW (the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy) was established in 2016 [15, 16]. Since then, cIMPACT-NOW has convened three separate working committees to address classification and grading questions and challenges. Working Committee 1 focused on a concern that the classification and grading of Isocitrate Dehydrogenase (IDH)-wildtype diffuse astrocytic gliomas do not reflect our current understanding of the molecular pathogenesis and clinical outcomes associated with these tumors.

Numerous high-profile publications have documented the distinct genetic...

Notes

Acknowledgements

This paper has been reviewed by the Steering Committee and Clinical Advisory Panel of cIMPACT-NOW [15, 16] and by the International Society of Neuropathology Executive.

References

  1. 1.
    Aibaidula A, Chan AK, Shi Z, Li Y, Zhang R, Yang R et al (2017) Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol 19:1327–1337.  https://doi.org/10.1093/neuonc/nox078 CrossRefPubMedGoogle Scholar
  2. 2.
    Aoki K, Nakamura H, Suzuki H, Matsuo K, Kataoka K, Shimamura T et al (2018) Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol 20:66–77.  https://doi.org/10.1093/neuonc/nox132 CrossRefPubMedGoogle Scholar
  3. 3.
    Arita H, Yamasaki K, Matsushita Y, Nakamura T, Shimokawa A, Takami H et al (2016) A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun 4:79.  https://doi.org/10.1186/s40478-016-0351-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cancer Genome Atlas Research N, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498.  https://doi.org/10.1056/nejmoa1402121 CrossRefGoogle Scholar
  5. 5.
    Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474.  https://doi.org/10.1038/nature26000 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563.  https://doi.org/10.1016/j.cell.2015.12.028 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chi AS, Batchelor TT, Yang D, Dias-Santagata D, Borger DR, Ellisen LW et al (2013) BRAF V600E mutation identifies a subset of low-grade diffusely infiltrating gliomas in adults. J Clin Oncol 31:e233–e236.  https://doi.org/10.1200/JCO.2012.46.0220 CrossRefPubMedGoogle Scholar
  8. 8.
    Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508.  https://doi.org/10.1056/NEJMoa1407279 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718.  https://doi.org/10.1007/s00401-010-0781-z CrossRefPubMedGoogle Scholar
  10. 10.
    Hasselblatt M, Jaber M, Reuss D, Grauer O, Bibo A, Terwey S et al (2018) Diffuse astrocytoma, IDH-wildtype: a dissolving diagnosis. J Neuropathol Exp Neurol 77:422–425.  https://doi.org/10.1093/jnen/nly012 CrossRefPubMedGoogle Scholar
  11. 11.
    Hirose Y, Sasaki H, Abe M, Hattori N, Adachi K, Nishiyama Y et al (2013) Subgrouping of gliomas on the basis of genetic profiles. Brain Tumor Pathol 30:203–208.  https://doi.org/10.1007/s10014-013-0148-y CrossRefPubMedGoogle Scholar
  12. 12.
    Koelsche C, Sahm F, Capper D, Reuss D, Sturm D, Jones DT et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126:907–915.  https://doi.org/10.1007/s00401-013-1195-5 CrossRefPubMedGoogle Scholar
  13. 13.
    Korshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131:137–146.  https://doi.org/10.1007/s00401-015-1493-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Lee M, Kang SY, Suh YL (2018) Genetic alterations of epidermal growth factor receptor in glioblastoma: the usefulness of immunohistochemistry. Appl Immunohistochem Mol Morphol.  https://doi.org/10.1097/pai.0000000000000669 CrossRefPubMedGoogle Scholar
  15. 15.
    Louis DN, Aldape K, Brat DJ, Capper D, Ellison DW, Hawkins C et al (2017) Announcing cIMPACT-NOW: the consortium to inform molecular and practical approaches to CNS tumor taxonomy. Acta Neuropathol 133:1–3.  https://doi.org/10.1007/s00401-016-1646-x CrossRefPubMedGoogle Scholar
  16. 16.
    Louis DN, Aldape K, Brat DJ, Capper D, Ellison DW, Hawkins C et al (2017) cIMPACT-NOW (the consortium to inform molecular and practical approaches to CNS tumor taxonomy): a new initiative in advancing nervous system tumor classification. Brain Pathol 27:851–852.  https://doi.org/10.1111/bpa.12457 CrossRefPubMedGoogle Scholar
  17. 17.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification of tumours of the central nervous system. Intl. Agency for Research, CityGoogle Scholar
  18. 18.
    Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A et al (2014) International Society Of Neuropathology-Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24:429–435.  https://doi.org/10.1111/bpa.12171 CrossRefPubMedGoogle Scholar
  19. 19.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Louis DN, von Deimling A (2017) Grading of diffuse astrocytic gliomas: Broders, Kernohan, Zulch, the WHO… and Shakespeare. Acta Neuropathol 134:517–520.  https://doi.org/10.1007/s00401-017-1765-z CrossRefPubMedGoogle Scholar
  21. 21.
    Nguyen HN, Lie A, Li T, Chowdhury R, Liu F, Ozer B et al (2017) Human TERT promoter mutation enables survival advantage from MGMT promoter methylation in IDH1 wild-type primary glioblastoma treated by standard chemoradiotherapy. Neuro Oncol 19:394–404.  https://doi.org/10.1093/neuonc/now189 CrossRefPubMedGoogle Scholar
  22. 22.
    Nomura M, Mukasa A, Nagae G, Yamamoto S, Tatsuno K, Ueda H et al (2017) Distinct molecular profile of diffuse cerebellar gliomas. Acta Neuropathol 134:941–956.  https://doi.org/10.1007/s00401-017-1771-1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Picart T, Barritault M, Berthillier J, Meyronet D, Vasiljevic A, Frappaz D et al (2018) Characteristics of cerebellar glioblastomas in adults. J Neurooncol 136:555–563.  https://doi.org/10.1007/s11060-017-2682-7 CrossRefPubMedGoogle Scholar
  24. 24.
    Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD et al (2016) Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131:833–845.  https://doi.org/10.1007/s00401-016-1539-z CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Reinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE et al (2018) Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol 136:273–291.  https://doi.org/10.1007/s00401-018-1837-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Reuss DE, Kratz A, Sahm F, Capper D, Schrimpf D, Koelsche C et al (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130:407–417.  https://doi.org/10.1007/s00401-015-1454-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Stichel D, Ebrahimi A, Reuss D, Schrimpf D, Ono T, Shirahata M et al (2018) Distribution of EGFR amplification, combined 7gain and 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol (in press), Doi.  https://doi.org/10.1007/s00401-018-1905-0 CrossRefGoogle Scholar
  28. 28.
    Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437.  https://doi.org/10.1016/j.ccr.2012.08.024 CrossRefPubMedGoogle Scholar
  29. 29.
    Tabouret E, Nguyen AT, Dehais C, Carpentier C, Ducray F, Idbaih A et al (2016) Prognostic impact of the 2016 WHO classification of diffuse gliomas in the French POLA cohort. Acta Neuropathol 132:625–634.  https://doi.org/10.1007/s00401-016-1611-8 CrossRefPubMedGoogle Scholar
  30. 30.
    Vaubel RA, Caron AA, Yamada S, Decker PA, Eckel Passow JE, Rodriguez FJ et al (2018) Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol 28:172–182.  https://doi.org/10.1111/bpa.12495 CrossRefPubMedGoogle Scholar
  31. 31.
    Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V et al (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4:2185.  https://doi.org/10.1038/ncomms3185 CrossRefPubMedGoogle Scholar
  32. 32.
    Weller M, Weber RG, Willscher E, Riehmer V, Hentschel B, Kreuz M et al (2015) Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 129:679–693.  https://doi.org/10.1007/s00401-015-1409-0 CrossRefPubMedGoogle Scholar
  33. 33.
    Wijnenga MMJ, Dubbink HJ, French PJ, Synhaeve NE, Dinjens WNM, Atmodimedjo PN et al (2017) Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification. Acta Neuropathol 134:957–959.  https://doi.org/10.1007/s00401-017-1781-z CrossRefPubMedGoogle Scholar
  34. 34.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773.  https://doi.org/10.1056/NEJMoa0808710 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniel J. Brat
    • 1
  • Kenneth Aldape
    • 2
  • Howard Colman
    • 3
  • Eric C. Holland
    • 4
  • David N. Louis
    • 5
  • Robert B. Jenkins
    • 6
  • B. K. Kleinschmidt-DeMasters
    • 7
  • Arie Perry
    • 8
  • Guido Reifenberger
    • 9
    • 10
  • Roger Stupp
    • 11
  • Andreas von Deimling
    • 12
    • 13
  • Michael Weller
    • 14
  1. 1.Department of Pathology, Robert H. Lurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Laboratory of Pathology, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  3. 3.Department of Neurosurgery, Huntsman Cancer CenterUniversity of UtahSalt Lake CityUSA
  4. 4.Department of Neurosurgery, Fred Hutchinson Cancer CenterUniversity of WashingtonSeattleUSA
  5. 5.Department of Pathology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  6. 6.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  7. 7.Department of PathologyUniversity of Colorado School of MedicineAuroraUSA
  8. 8.Department of PathologyUniversity of California San FranciscoSan FranciscoUSA
  9. 9.Department of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
  10. 10.German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
  11. 11.Malnati Brain Tumor Institute, Robert H. Lurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoUSA
  12. 12.Department of Neuropathology, Institute of PathologyUniversity of HeidelbergHeidelbergGermany
  13. 13.Clinical Cooperation Unit NeuropathologyGerman Cancer Institute (DKFZ)HeidelbergGermany
  14. 14.Department of NeurologyUniversity Hospital and University of ZurichZurichSwitzerland

Personalised recommendations