Advertisement

Acta Neuropathologica

, Volume 136, Issue 6, pp 955–972 | Cite as

Astrocytic degeneration in chronic traumatic encephalopathy

  • Eric T. Hsu
  • Mihika Gangolli
  • Shiran Su
  • Laurena Holleran
  • Thor D. Stein
  • Victor E. Alvarez
  • Ann C. McKee
  • Robert E. Schmidt
  • David L. Brody
Original Paper

Abstract

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repeated head traumas. Using immunohistochemistry for glial fibrillary acidic protein as a marker, plus automated quantitative analysis, we examined the characteristics and extent of astrogliosis present in stage III and IV CTE, along with Alzheimer’s disease (AD), and frontotemporal dementia (FTD) cases. Astrogliosis in CTE patients was more diffuse compared to that of AD and FTD patients, which was concentrated in the sulcal depths. Of 14 patients with CTE, 10 exhibited signs of a degenerating astrocyte pathology, characterized by beaded, broken astrocytic processes. This astrocytic degeneration was typically found to be diffuse throughout the white matter, although two cases demonstrated astrocytic degeneration in the gray matter. The degeneration was also observed in 2 of 3 AD and 2 of 3 FTD brains, with overall similar characteristics across diseases. There was minimal to no astrocytic degeneration in six age-matched controls with no neurodegenerative disease. We found that the extent of the white matter astrocytic degeneration was strongly correlated with the level of overall astrogliosis in both the white and gray matter. However, astrocytic degeneration was not correlated with the overall extent of tau pathology. Specifically, there was no correlation between levels of p-tau in the sulcal depths and astrocytic degeneration in the white matter adjacent to the sulcal depths. Thus, astrocytic degeneration and overall astrogliosis appear to represent distinct pathological features of CTE. Further investigation into these astroglial pathologies could provide new insights into underlying disease mechanisms and represent a potential target for in vivo assessment of CTE as well as other neurodegenerative disorders.

Keywords

Chronic traumatic encephalopathy Neurodegeneration Astrocyte Glial fibrillary acidic protein 

Notes

Acknowledgements

We would like to thank the donors and their families for the generous brain donation which made this research possible. We would also like to thank VA Boston Healthcare System and Boston University Alzheimer’s Disease and CTE Center for sample procurement. The studies presented in this work were carried out, in part, using the Hope Center Alafi Neuroimaging Lab, Washington University in St. Louis and the Washington University Center for Cellular Imaging (P30 NS057105). We would also like to thank Marc Goldfinger, Steve Gentleman, Dan Perl, Thomas J. Esparza, and Andrew Sauerbeck for helpful discussions. This research was funded by the National Institute of Health, and the views expressed are those of the authors. NIH UO1 NS086659-02 (Overall PI: A. McKee, Subproject 3 PI: Brody), the US Department of Veterans Affairs, the National Operating Committee on Standards for Athletic Equipment, the Concussion Legacy Foundation, the Andlinger Family Foundation, the WWE, and the NFL. Additional support was provided by a SURF fellowship from Washington University to E. Hsu.

Funding

NIH UO1 NS086659-02 (Overall PI: A. McKee, Subproject 3 PI: Brody).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

401_2018_1902_MOESM1_ESM.pdf (14 mb)
Supplementary material 1 (PDF 14319 kb)

References

  1. 1.
    Alilain WJ, Horn KP, Hu H, Dick TE, Silver J (2011) Functional regeneration of respiratory pathways after spinal cord injury. Nature 475:196–200.  https://doi.org/10.1038/nature10199 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A (2011) The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334:1727–1731.  https://doi.org/10.1126/science.1206936 CrossRefPubMedGoogle Scholar
  3. 3.
    Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N (2006) NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci USA 103:2892–2897.  https://doi.org/10.1073/pnas.0511065103 CrossRefPubMedGoogle Scholar
  4. 4.
    Asken BM, Sullan MJ, DeKosky ST, Jaffee MS, Bauer RM (2017) Research gaps and controversies in chronic traumatic encephalopathy: a review. JAMA Neurol 74:1255–1262.  https://doi.org/10.1001/jamaneurol.2017.2396 CrossRefPubMedGoogle Scholar
  5. 5.
    Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13.  https://doi.org/10.1016/j.nbd.2003.12.016 CrossRefPubMedGoogle Scholar
  6. 6.
    Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Merrill DA, Giza CC, Fitzsimmons RP, Omalu B, Bailes J, Kepe V (2015) In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci USA 112:E2039–E2047.  https://doi.org/10.1073/pnas.1409952112 CrossRefPubMedGoogle Scholar
  7. 7.
    Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202:145–156.  https://doi.org/10.1084/jem.20041918 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Broe M, Kril J, Halliday GM (2004) Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain 127:2214–2220.  https://doi.org/10.1093/brain/awh250 CrossRefPubMedGoogle Scholar
  9. 9.
    Bukhari W, Barnett MH, Prain K, Broadley SA (2012) Molecular pathogenesis of neuromyelitis optica. Int J Mol Sci 13:12970–12993.  https://doi.org/10.3390/ijms131012970 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308CrossRefPubMedGoogle Scholar
  11. 11.
    Caserta MT, Caccioppo D, Lapin GD, Ragin A, Groothuis DR (1998) Blood-brain barrier integrity in Alzheimer’s disease patients and elderly control subjects. J Neuropsychiatry Clin Neurosci 10:78–84.  https://doi.org/10.1176/jnp.10.1.78 CrossRefPubMedGoogle Scholar
  12. 12.
    Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992CrossRefPubMedGoogle Scholar
  13. 13.
    Corsellis JA, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303.  https://doi.org/10.1017/S0033291700049588 CrossRefGoogle Scholar
  14. 14.
    de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697.  https://doi.org/10.1016/j.neuron.2011.11.033 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dickson DW, Kouri N, Murray ME, Josephs KA (2011) Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci 45:384–389.  https://doi.org/10.1007/s12031-011-9589-0 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Doherty CP, O’Keefe E, Wallace E, Loftus T, Keaney J, Kealy J, Humphries MM, Molloy MG, Meaney JF, Farrell M, Campbell M (2016) Blood-brain barrier dysfunction as a hallmark pathology in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 75:656–662.  https://doi.org/10.1093/jnen/nlw036 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513.  https://doi.org/10.1038/jcbfm.2013.135 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155.  https://doi.org/10.1523/JNEUROSCI.3547-03.2004 CrossRefPubMedGoogle Scholar
  19. 19.
    Gangolli M, Holleran L, Hee Kim J, Stein TD, Alvarez V, McKee AC, Brody DL (2017) Quantitative validation of a nonlinear histology-MRI coregistration method using generalized Q-sampling imaging in complex human cortical white matter. Neuroimage 153:152–167.  https://doi.org/10.1016/j.neuroimage.2017.03.059 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Geddes JF, Vowles GH, Nicoll JA, Revesz T (1999) Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol 98:171–178.  https://doi.org/10.1007/s004010051066 CrossRefGoogle Scholar
  21. 21.
    Gruden MA, Davidova TB, Malisauskas M, Sewell RD, Voskresenskaya NI, Wilhelm K, Elistratova EI, Sherstnev VV, Morozova-Roche LA (2007) Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: autoantibodies to Abeta((25-35)) oligomers, S100b and neurotransmitters. J Neuroimmunol 186:181–192.  https://doi.org/10.1016/j.jneuroim.2007.03.023 CrossRefPubMedGoogle Scholar
  22. 22.
    Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63.  https://doi.org/10.1016/j.molmed.2006.12.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Hamby ME, Coppola G, Ao Y, Geschwind DH, Khakh BS, Sofroniew MV (2012) Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J Neurosci 32:14489–14510.  https://doi.org/10.1523/JNEUROSCI.1256-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Holleran L, Kim JH, Gangolli M, Stein T, Alvarez V, McKee A, Brody DL (2017) Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy. Acta Neuropathol 133:367–380.  https://doi.org/10.1007/s00401-017-1686-x CrossRefPubMedGoogle Scholar
  25. 25.
    Ihara M, Polvikoski TM, Hall R, Slade JY, Perry RH, Oakley AE, Englund E, O’Brien JT, Ince PG, Kalaria RN (2010) Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer’s disease, and dementia with Lewy bodies. Acta Neuropathol 119:579–589.  https://doi.org/10.1007/s00401-009-0635-8 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952.  https://doi.org/10.1038/nn.4043 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726.  https://doi.org/10.1038/nm1058 CrossRefPubMedGoogle Scholar
  28. 28.
    Kovacs GG (2015) Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 41:3–23.  https://doi.org/10.1111/nan.12208 CrossRefPubMedGoogle Scholar
  29. 29.
    Kovacs GG, Ferrer I, Grinberg LT, Alafuzoff I, Attems J, Budka H, Cairns NJ, Crary JF, Duyckaerts C, Ghetti B, Halliday GM, Ironside JW, Love S, Mackenzie IR, Munoz DG, Murray ME, Nelson PT, Takahashi H, Trojanowski JQ, Ansorge O, Arzberger T, Baborie A, Beach TG, Bieniek KF, Bigio EH, Bodi I, Dugger BN, Feany M, Gelpi E, Gentleman SM, Giaccone G, Hatanpaa KJ, Heale R, Hof PR, Hofer M, Hortobagyi T, Jellinger K, Jicha GA, Ince P, Kofler J, Kovari E, Kril JJ, Mann DM, Matej R, McKee AC, McLean C, Milenkovic I, Montine TJ, Murayama S, Lee EB, Rahimi J, Rodriguez RD, Rozemuller A, Schneider JA, Schultz C, Seeley W, Seilhean D, Smith C, Tagliavini F, Takao M, Thal DR, Toledo JB, Tolnay M, Troncoso JC, Vinters HV, Weis S, Wharton SB, White CL 3rd, Wisniewski T, Woulfe JM, Yamada M, Dickson DW (2016) Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol 131:87–102.  https://doi.org/10.1007/s00401-015-1509-x CrossRefGoogle Scholar
  30. 30.
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487.  https://doi.org/10.1038/nature21029 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Martin JA, Craft DK, Su JH, Kim RC, Cotman CW (2001) Astrocytes degenerate in frontotemporal dementia: possible relation to hypoperfusion. Neurobiol Aging 22:195–207CrossRefPubMedGoogle Scholar
  32. 32.
    Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758CrossRefPubMedGoogle Scholar
  33. 33.
    McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, Perl DP, Stein TD, Vonsattel JP, Stewart W, Tripodis Y, Crary JF, Bieniek KF, Dams-O’Connor K, Alvarez VE, Gordon WA, group TC (2016) The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 131:75–86.  https://doi.org/10.1007/s00401-015-1515-z CrossRefGoogle Scholar
  34. 34.
    McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee HS, Kubilus CA, Stern RA (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68:709–735.  https://doi.org/10.1097/NEN.0b013e3181a9d503 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    McKee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. Handb Clin Neurol 127:45–66.  https://doi.org/10.1016/B978-0-444-52892-6.00004-0 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    McKee AC, Stein TD, Kiernan PT, Alvarez VE (2015) The neuropathology of chronic traumatic encephalopathy. Brain Pathol 25:350–364.  https://doi.org/10.1111/bpa.12248 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, Lee HS, Wojtowicz SM, Hall G, Baugh CM, Riley DO, Kubilus CA, Cormier KA, Jacobs MA, Martin BR, Abraham CR, Ikezu T, Reichard RR, Wolozin BL, Budson AE, Goldstein LE, Kowall NW, Cantu RC (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64.  https://doi.org/10.1093/brain/aws307 CrossRefGoogle Scholar
  38. 38.
    McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11:3398–3411CrossRefPubMedGoogle Scholar
  39. 39.
    Mez J, Daneshvar DH, Kiernan PT, Abdolmohammadi B, Alvarez VE, Huber BR, Alosco ML, Solomon TM, Nowinski CJ, McHale L, Cormier KA, Kubilus CA, Martin BM, Murphy L, Baugh CM, Montenigro PH, Chaisson CE, Tripodis Y, Kowall NW, Weuve J, McClean MD, Cantu RC, Goldstein LE, Katz DI, Stern RA, Stein TD, McKee AC (2017) Clinicopathological evaluation of chronic traumatic encephalopathy in players of american football. JAMA 318:360–370.  https://doi.org/10.1001/jama.2017.8334 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Milsted A, Barna BP, Ransohoff RM, Brosnihan KB, Ferrario CM (1990) Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA. Proc Natl Acad Sci USA 87:5720–5723CrossRefPubMedGoogle Scholar
  41. 41.
    Noy S, Krawitz S, Del Bigio MR (2016) Chronic traumatic encephalopathy-like abnormalities in a routine neuropathology service. J Neuropathol Exp Neurol 75:1145–1154.  https://doi.org/10.1093/jnen/nlw092 CrossRefPubMedGoogle Scholar
  42. 42.
    Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596.  https://doi.org/10.1038/nm.3407 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Olah M, Biber K, Vinet J, Boddeke HW (2011) Microglia phenotype diversity. CNS Neurol Disord Drug Targ 10:108–118CrossRefGoogle Scholar
  44. 44.
    Omalu B, Small GW, Bailes J, Ercoli LM, Merrill DA, Wong KP, Huang SC, Satyamurthy N, Hammers JL, Lee J, Fitzsimmons RP, Barrio JR (2017) Postmortem autopsy-confirmation of antemortem [F-18]FDDNP-PET scans in a football player with chronic traumatic encephalopathy. Neurosurgery.  https://doi.org/10.1093/neuros/nyx536 CrossRefGoogle Scholar
  45. 45.
    Omalu BI, DeKosky ST, Hamilton RL, Minster RL, Kamboh MI, Shakir AM, Wecht CH (2006) Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery 59:1086–1092.  https://doi.org/10.1227/01.neu.0000245601.69451.27 (discussion 1092–1083) CrossRefPubMedGoogle Scholar
  46. 46.
    Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH (2005) Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57:128–134.  https://doi.org/10.1227/01.neu.0000163407.92769.ed (discussion 128–134) CrossRefPubMedGoogle Scholar
  47. 47.
    Papadopoulos MC, Verkman AS (2012) Aquaporin 4 and neuromyelitis optica. Lancet Neurol 11:535–544.  https://doi.org/10.1016/S1474-4422(12)70133-3 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Parratt JD, Prineas JW (2010) Neuromyelitis optica: a demyelinating disease characterized by acute destruction and regeneration of perivascular astrocytes. Mult Scler 16:1156–1172.  https://doi.org/10.1177/1352458510382324 CrossRefPubMedGoogle Scholar
  49. 49.
    Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529.  https://doi.org/10.1002/mrd.22489 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Shively SB, Horkayne-Szakaly I, Jones RV, Kelly JP, Armstrong RC, Perl DP (2016) Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol 15:944–953.  https://doi.org/10.1016/S1474-4422(16)30057-6 CrossRefPubMedGoogle Scholar
  52. 52.
    Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C, Wharton SB, Function MRCC, Ageing Neuropathology Study G (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 31:578–590.  https://doi.org/10.1016/j.neurobiolaging.2008.05.015 CrossRefPubMedGoogle Scholar
  53. 53.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35.  https://doi.org/10.1007/s00401-009-0619-8 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Starr JM, Farrall AJ, Armitage P, McGurn B, Wardlaw J (2009) Blood-brain barrier permeability in Alzheimer’s disease: a case-control MRI study. Psychiatry Res 171:232–241.  https://doi.org/10.1016/j.pscychresns.2008.04.003 CrossRefPubMedGoogle Scholar
  55. 55.
    Stein TD, Alvarez VE, McKee AC (2015) Concussion in chronic traumatic encephalopathy. Curr Pain Headache Rep 19:47.  https://doi.org/10.1007/s11916-015-0522-z CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Stern RA, Daneshvar DH, Baugh CM, Seichepine DR, Montenigro PH, Riley DO, Fritts NG, Stamm JM, Robbins CA, McHale L, Simkin I, Stein TD, Alvarez VE, Goldstein LE, Budson AE, Kowall NW, Nowinski CJ, Cantu RC, McKee AC (2013) Clinical presentation of chronic traumatic encephalopathy. Neurology 81:1122–1129.  https://doi.org/10.1212/WNL.0b013e3182a55f7f CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Biol 84:183–192CrossRefPubMedGoogle Scholar
  58. 58.
    Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823.  https://doi.org/10.1016/j.cell.2011.02.018 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tai XY, Koepp M, Duncan JS, Fox N, Thompson P, Baxendale S, Liu JY, Reeves C, Michalak Z, Thom M (2016) Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain 139:2441–2455.  https://doi.org/10.1093/brain/aww187 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tanaka J, Nakamura K, Takeda M, Tada K, Suzuki H, Morita H, Okado T, Hariguchi S, Nishimura T (1989) Enzyme-linked immunosorbent assay for human autoantibody to glial fibrillary acidic protein: higher titer of the antibody is detected in serum of patients with Alzheimer’s disease. Acta Neurol Scand 80:554–560CrossRefPubMedGoogle Scholar
  61. 61.
    Tang-Schomer MD, Patel AR, Baas PW, Smith DH (2010) Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J 24:1401–1410.  https://doi.org/10.1096/fj.09-142844 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tomimoto H, Akiguchi I, Wakita H, Suenaga T, Nakamura S, Kimura J (1997) Regressive changes of astroglia in white matter lesions in cerebrovascular disease and Alzheimer’s disease patients. Acta Neuropathol 94:146–152.  https://doi.org/10.1007/s004010050686 CrossRefPubMedGoogle Scholar
  63. 63.
    Turner RC, Lucke-Wold BP, Robson MJ, Lee JM, Bailes JE (2016) Alzheimer’s disease and chronic traumatic encephalopathy: distinct but possibly overlapping disease entities. Brain Inj 30:1279–1292.  https://doi.org/10.1080/02699052.2016.1193631 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wang KK, Yang Z, Yue JK, Zhang Z, Winkler EA, Puccio AM, Diaz-Arrastia R, Lingsma HF, Yuh EL, Mukherjee P, Valadka AB, Gordon WA, Okonkwo DO, Manley GT, Cooper SR, Dams-O’Connor K, Hricik AJ, Inoue T, Maas AI, Menon DK, Schnyer DM, Sinha TK, Vassar MJ (2016) Plasma anti-glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury pilot study. J Neurotrauma 33:1270–1277.  https://doi.org/10.1089/neu.2015.3881 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M, Moumdjian R, Bouthillier A, Reudelhuber TL, Prat A (2007) Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J Neurosci 27:9032–9042.  https://doi.org/10.1523/JNEUROSCI.2088-07.2007 CrossRefPubMedGoogle Scholar
  66. 66.
    Wu J, Li L (2016) Autoantibodies in Alzheimer’s disease: potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res 30:361–372.  https://doi.org/10.7555/JBR.30.20150131 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410.  https://doi.org/10.1523/JNEUROSCI.6221-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018

Authors and Affiliations

  • Eric T. Hsu
    • 1
  • Mihika Gangolli
    • 2
  • Shiran Su
    • 2
  • Laurena Holleran
    • 1
    • 3
  • Thor D. Stein
    • 4
    • 5
    • 6
  • Victor E. Alvarez
    • 4
    • 5
    • 6
  • Ann C. McKee
    • 4
    • 5
    • 6
    • 7
  • Robert E. Schmidt
    • 8
  • David L. Brody
    • 1
    • 2
    • 8
    • 9
    • 10
  1. 1.Department of NeurologyWashington UniversitySt. LouisUSA
  2. 2.Department of Biomedical EngineeringWashington UniversitySt. LouisUSA
  3. 3.Centre for Neuroimaging and Cognitive GenomicsNational University of IrelandGalwayIreland
  4. 4.VA Boston Healthcare SystemBostonUSA
  5. 5.Boston University Alzheimer’s Disease and CTE Center, Boston University School of MedicineBostonUSA
  6. 6.Department of PathologyBoston University School of MedicineBostonUSA
  7. 7.Department of NeurologyBoston University School of MedicineBostonUSA
  8. 8.Department of Pathology and ImmunologyWashington UniversitySt. LouisUSA
  9. 9.Hope Center for Neurological DisordersWashington UniversitySt. LouisUSA
  10. 10.Uniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations