Acta Neuropathologica

, Volume 136, Issue 3, pp 345–361 | Cite as

Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

  • Carolina PellegriniEmail author
  • Luca Antonioli
  • Rocchina Colucci
  • Corrado Blandizzi
  • Matteo Fornai


Neurological diseases, such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.


Gut microbiota Intestinal mucosal barrier Enteric neuro-immune system Gut–brain axis Patients Animal models Neurodegenerative diseases 



No funding declared.

Compliance with ethical standards

Conflict of interest

The authors report no competing interests.


The authors report no disclosures.


  1. 1.
    Abdo H, Derkinderen P, Gomes P, Chevalier J, Aubert P, Masson D et al (2010) Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J 24:1082–1094. CrossRefPubMedGoogle Scholar
  2. 2.
    Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F et al (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genom Med 9:39. CrossRefGoogle Scholar
  3. 3.
    Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M et al (2014) Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol 14:189. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bodukam V, Hays RD, Maranian P, Furst DE, Seibold JR, Impens A et al (2011) Association of gastrointestinal involvement and depressive symptoms in patients with systemic sclerosis. Rheumatology 50:330–334. CrossRefPubMedGoogle Scholar
  5. 5.
    Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C et al (2017) Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7:2426. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brandscheid C, Schuck F, Reinhardt S, Schafer KH, Pietrzik CU, Grimm M et al (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56:775–788. CrossRefPubMedGoogle Scholar
  7. 7.
    Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Braunschweig H, Damme A, Jimenez-Halla JO, Horl C, Krummenacher I, Kupfer T et al (2012) 1-Heteroaromatic-substituted tetraphenylboroles: pi–pi interactions between aromatic and antiaromatic rings through a B–C bond. J Am Chem Soc 134:20169–20177. CrossRefPubMedGoogle Scholar
  9. 9.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108:16050–16055. CrossRefPubMedGoogle Scholar
  10. 10.
    Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C et al (2013) Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145:1323–1333. CrossRefPubMedGoogle Scholar
  11. 11.
    Buscarinu MC, Cerasoli B, Annibali V, Policano C, Lionetto L, Capi M et al (2017) Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: a pilot study. Mult Scler 23:442–446. CrossRefPubMedGoogle Scholar
  12. 12.
    Cani PD, Everard A, Duparc T (2013) Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 13:935–940. CrossRefPubMedGoogle Scholar
  13. 13.
    Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM et al (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 6:28484. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM et al (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 6:28484. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chung H, Kasper DL (2010) Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol 22:455–460. CrossRefPubMedGoogle Scholar
  16. 16.
    Clairembault T, Kamphuis W, Leclair-Visonneau L, Rolli-Derkinderen M, Coron E, Neunlist M et al (2014) Enteric GFAP expression and phosphorylation in Parkinson’s disease. J Neurochem 130:805–815. CrossRefPubMedGoogle Scholar
  17. 17.
    Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S, Vavasseur F et al (2015) Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun 3:12. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cote M, Drouin-Ouellet J, Cicchetti F, Soulet D (2011) The critical role of the MyD88-dependent pathway in non-CNS MPTP-mediated toxicity. Brain Behav Immun 25:1143–1152. CrossRefPubMedGoogle Scholar
  19. 19.
    Cote M, Poirier AA, Aube B, Jobin C, Lacroix S, Soulet D (2015) Partial depletion of the proinflammatory monocyte population is neuroprotective in the myenteric plexus but not in the basal ganglia in a MPTP mouse model of Parkinson’s disease. Brain Behav Immun 46:154–167. CrossRefPubMedGoogle Scholar
  20. 20.
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. CrossRefPubMedGoogle Scholar
  21. 21.
    Del Tredici K, Braak H (2016) Review: sporadic Parkinson’s disease: development and distribution of alpha-synuclein pathology. Neuropathol Appl Neurobiol 42:33–50. CrossRefPubMedGoogle Scholar
  22. 22.
    Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H (2002) Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426CrossRefGoogle Scholar
  23. 23.
    Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S, Naveilhan P, Nguyen JM et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48. CrossRefPubMedGoogle Scholar
  24. 24.
    Dzamko N, Geczy CL, Halliday GM (2015) Inflammation is genetically implicated in Parkinson’s disease. Neuroscience 302:89–102. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fang X, Wang X, Yang S, Meng F, Wang X, Wei H et al (2016) Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front Microbiol 7:1479. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Felice VD, Quigley EM, Sullivan AM, O’Keeffe GW, O’Mahony SM (2016) Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 27:1–8. CrossRefPubMedGoogle Scholar
  28. 28.
    Feng J, Dong L, Zhang J, Han X, Tang S, Song L et al (2018) Unique expression pattern of KIBRA in the enteric nervous system of APP/PS1 mice. Neurosci Lett 675:41–47. CrossRefPubMedGoogle Scholar
  29. 29.
    Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6:e28032. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Foster JA, Rinaman L, Cryan JF (2017) Stress and the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155. CrossRefPubMedGoogle Scholar
  32. 32.
    Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294. CrossRefPubMedGoogle Scholar
  33. 33.
    Furness JB, Callaghan BP, Rivera LR, Cho HJ (2014) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817:39–71. CrossRefPubMedGoogle Scholar
  34. 34.
    Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317. CrossRefPubMedGoogle Scholar
  35. 35.
    Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20. (quiz 21-22) CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Grosicki GJ, Fielding RA, Lustgarten MS (2017) Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcif Tissue Int. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A et al (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43:817–829. CrossRefPubMedGoogle Scholar
  38. 38.
    Han X, Tang S, Dong L, Song L, Dong Y, Wang Y et al (2017) Loss of nitrergic and cholinergic neurons in the enteric nervous system of APP/PS1 transgenic mouse model. Neurosci Lett 642:59–65. CrossRefPubMedGoogle Scholar
  39. 39.
    Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7:41802. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Haro C, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, Delgado-Lista J et al (2016) Intestinal microbiota is influenced by gender and body mass index. PLoS ONE 11:e0154090. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K et al (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS ONE 10:e0142164. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32:739–749. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Holzer P, Farzi A (2014) Neuropeptides and the microbiota-gut-brain axis. Adv Exp Med Biol 817:195–219. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hopfner F, Kunstner A, Muller SH, Kunzel S, Zeuner KE, Margraf NG et al (2017) Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 1667:41–45. CrossRefPubMedGoogle Scholar
  45. 45.
    Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59:1006–1023. CrossRefPubMedGoogle Scholar
  46. 46.
    Jiang C, Li G, Huang P, Liu Z, Zhao B (2017) The Gut Microbiota and Alzheimer’s Disease. J Alzheimers Dis 58:1–15. CrossRefPubMedGoogle Scholar
  47. 47.
    Joachim CL, Mori H, Selkoe DJ (1989) Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature 341:226–230. CrossRefPubMedGoogle Scholar
  48. 48.
    Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H et al (2015) Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85:289–295. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kelly LP, Carvey PM, Keshavarzian A, Shannon KM, Shaikh M, Bakay RA et al (2014) Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord 29:999–1009. CrossRefPubMedGoogle Scholar
  50. 50.
    Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360. CrossRefPubMedGoogle Scholar
  51. 51.
    Lavasani S, Dzhambazov B, Nouri M, Fak F, Buske S, Molin G et al (2010) A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE 5:e9009. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Leblhuber F, Geisler S, Steiner K, Fuchs D, Schutz B (2015) Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut. J Neural Transm 122:1319–1322. CrossRefPubMedGoogle Scholar
  53. 53.
    Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. PNAS Suppl 1:4615–4622. CrossRefGoogle Scholar
  54. 54.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG et al (2016) Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mancuso C, Santangelo R (2017) Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence. Pharmacol Res. CrossRefPubMedGoogle Scholar
  57. 57.
    Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25:e183–e188. CrossRefGoogle Scholar
  60. 60.
    Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K et al (2017) Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLoS ONE 12:e0187307. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T et al (2015) Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS ONE 10:e0137429. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Murono S, Hamaguchi T, Yoshida H, Nakanishi Y, Tsuji A, Endo K et al (2015) Evaluation of dysphagia at the initial diagnosis of amyotrophic lateral sclerosis. Auris Nasus Larynx 42:213–217. CrossRefPubMedGoogle Scholar
  63. 63.
    Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Neunlist M, Rolli-Derkinderen M, Latorre R, Van Landeghem L, Coron E, Derkinderen P et al (2014) Enteric glial cells: recent developments and future directions. Gastroenterology 147:1230–1237. CrossRefPubMedGoogle Scholar
  65. 65.
    Nouri M, Bredberg A, Westrom B, Lavasani S (2014) Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS ONE 9:e106335. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Nubling GS, Mie E, Bauer RM, Hensler M, Lorenzl S, Hapfelmeier A et al (2014) Increased prevalence of bladder and intestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15:174–179. CrossRefPubMedGoogle Scholar
  67. 67.
    Obata Y, Pachnis V (2016) The effect of Microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151:836–844. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23. CrossRefPubMedGoogle Scholar
  69. 69.
    Pellegrini C, Antonioli L, Colucci R, Ballabeni V, Barocelli E, Bernardini N et al (2015) Gastric motor dysfunctions in Parkinson’s disease: current pre-clinical evidence. Parkinsonism Relat Disord 21:1407–1414. CrossRefPubMedGoogle Scholar
  70. 70.
    Pellegrini C, Colucci R, Antonioli L, Barocelli E, Ballabeni V, Bernardini N et al (2016) Intestinal dysfunction in Parkinson’s disease: lessons learned from translational studies and experimental models. Neurogastroenterol Motil 28:1781–1791. CrossRefPubMedGoogle Scholar
  71. 71.
    Perez-Pardo P, Kliest T, Dodiya HB, Broersen LM, Garssen J, Keshavarzian A et al (2017) The gut-brain axis in Parkinson’s disease: possibilities for food-based therapies. Eur J Pharmacol 817:86–95. CrossRefPubMedGoogle Scholar
  72. 72.
    Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB et al (2017) Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162:734–737. CrossRefPubMedGoogle Scholar
  73. 73.
    Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74:624–634. CrossRefPubMedGoogle Scholar
  74. 74.
    Poirier AA, Aube B, Cote M, Morin N, Di Paolo T, Soulet D (2016) Gastrointestinal dysfunctions in Parkinson’s disease: symptoms and treatments. Parkinson’s Dis 2016:6762528. CrossRefGoogle Scholar
  75. 75.
    Puig KL, Lutz BM, Urquhart SA, Rebel AA, Zhou X, Manocha GD et al (2015) Overexpression of mutant amyloid-beta protein precursor and presenilin 1 modulates enteric nervous system. J Alzheimers Dis 44:1263–1278. CrossRefPubMedGoogle Scholar
  76. 76.
    Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y (2016) Aberrations in peripheral inflammatory cytokine levels in Parkinson Disease: a systematic review and meta-analysis. JAMA Neurol 73:1316–1324. CrossRefPubMedGoogle Scholar
  77. 77.
    Quigley EMM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17:94. CrossRefPubMedGoogle Scholar
  78. 78.
    Rao M, Gershon MD (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 13:517–528. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Riccio P, Rossano R (2018) Diet, gut microbiota, and vitamins D + A in multiple sclerosis. Neurotherapeutics 15:75–91. CrossRefPubMedGoogle Scholar
  80. 80.
    Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050. CrossRefPubMedGoogle Scholar
  81. 81.
    Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L et al (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22:586–597. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(1469–1480):e1412. CrossRefGoogle Scholar
  84. 84.
    Scheperjans F (2018) The prodromal microbiome. Mov Disord 33:5–7. CrossRefPubMedGoogle Scholar
  85. 85.
    Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. CrossRefPubMedGoogle Scholar
  86. 86.
    Semar S, Klotz M, Letiembre M, Van Ginneken C, Braun A, Jost V et al (2013) Changes of the enteric nervous system in amyloid-beta protein precursor transgenic mice correlate with disease progression. J Alzheimer’s Dis JAD 36:7–20. CrossRefGoogle Scholar
  87. 87.
    Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH (2012) Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord 27:716–719. CrossRefPubMedGoogle Scholar
  88. 88.
    Sharma R, Young C, Neu J (2010) Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol 2010:305879. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Shen L, Liu L, Ji HF (2017) Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimers Dis 56:385–390. CrossRefPubMedGoogle Scholar
  90. 90.
    Shi N, Li N, Duan X, Niu H (2017) Interaction between the gut microbiome and mucosal immune system. Mil Med Res 4:14. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. CrossRefPubMedGoogle Scholar
  92. 92.
    Sommer F, Backhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238. CrossRefPubMedGoogle Scholar
  93. 93.
    Stromnes IM, Goverman JM (2006) Active induction of experimental allergic encephalomyelitis. Nat Protoc 1:1810–1819. CrossRefPubMedGoogle Scholar
  94. 94.
    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Toepfer M, Folwaczny C, Klauser A, Riepl RL, Muller-Felber W, Pongratz D (1999) Gastrointestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:15–19CrossRefGoogle Scholar
  96. 96.
    Tognini P (2017) Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci 11:25. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81:369–382. CrossRefPubMedGoogle Scholar
  98. 98.
    Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. CrossRefPubMedGoogle Scholar
  99. 99.
    Vindigni SM, Zisman TL, Suskind DL, Damman CJ (2016) The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therapeutic Adv Gastroenterol 9:606–625. CrossRefGoogle Scholar
  100. 100.
    Visanji NP, Brooks PL, Hazrati LN, Lang AE (2013) The prion hypothesis in Parkinson’s disease: braak to the future. Acta Neuropathol Commun 1:2. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7:13537. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Wiesel PH, Norton C, Glickman S, Kamm MA (2001) Pathophysiology and management of bowel dysfunction in multiple sclerosis. Eur J Gastroenterol Hepatol 13:441–448CrossRefGoogle Scholar
  103. 103.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. PNAS 106:3698–3703. CrossRefPubMedGoogle Scholar
  104. 104.
    Winer DA, Luck H, Tsai S, Winer S (2016) The intestinal immune system in obesity and insulin resistance. Cell Metab 23:413–426. CrossRefPubMedGoogle Scholar
  105. 105.
    Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes 3:4–14. CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Wu JH, Guo Z, Kumar S, Lapuerta P (2011) Incidence of serious upper and lower gastrointestinal events in older adults with and without Alzheimer’s disease. J Am Geriatr Soc 59:2053–2061. CrossRefPubMedGoogle Scholar
  107. 107.
    Wu S, Yi J, Zhang YG, Zhou J, Sun J (2015) Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wunsch M, Jabari S, Voussen B, Enders M, Srinivasan S, Cossais F et al (2017) The enteric nervous system is a potential autoimmune target in multiple sclerosis. Acta Neuropathol 134:281–295. CrossRefPubMedGoogle Scholar
  109. 109.
    Yang X, Qian Y, Xu S, Song Y, Xiao Q (2017) Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson’s disease. Front Aging Neurosci 9:441. CrossRefPubMedGoogle Scholar
  110. 110.
    Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T (2008) NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 173:1714–1723. CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Yu YB, Li YQ (2014) Enteric glial cells and their role in the intestinal epithelial barrier. World J Gastroenterol 20:11273–11280. CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L et al (2013) Gender bias in autoimmunity is influenced by microbiota. Immunity 39:400–412. CrossRefPubMedGoogle Scholar
  113. 113.
    Zagni E, Simoni L, Colombo D (2016) Sex and gender differences in central nervous system-related disorders. Neuroscience 2016:2827090. CrossRefGoogle Scholar
  114. 114.
    Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z (2017) Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol 8:942. CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Zhang YG, Wu S, Yi J, Xia Y, Jin D, Zhou J et al (2017) Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther 39:322–336. CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Zhao Y, Lukiw WJ (2015) Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J Nat Sci. 1(7):e138PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
  2. 2.Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly

Personalised recommendations