Advertisement

Acta Neuropathologica

, Volume 136, Issue 1, pp 153–166 | Cite as

Novel, improved grading system(s) for IDH-mutant astrocytic gliomas

  • Mitsuaki Shirahata
  • Takahiro Ono
  • Damian Stichel
  • Daniel Schrimpf
  • David E. Reuss
  • Felix Sahm
  • Christian Koelsche
  • Annika Wefers
  • Annekathrin Reinhardt
  • Kristin Huang
  • Philipp Sievers
  • Hiroaki Shimizu
  • Hiroshi Nanjo
  • Yusuke Kobayashi
  • Yohei Miyake
  • Tomonari Suzuki
  • Jun-ichi Adachi
  • Kazuhiko Mishima
  • Atsushi Sasaki
  • Ryo Nishikawa
  • Melanie Bewerunge-Hudler
  • Marina Ryzhova
  • Oksana Absalyamova
  • Andrey Golanov
  • Peter Sinn
  • Michael Platten
  • Christine Jungk
  • Frank Winkler
  • Antje Wick
  • Daniel Hänggi
  • Andreas Unterberg
  • Stefan M. Pfister
  • David T. W. Jones
  • Martin van den Bent
  • Monika Hegi
  • Pim French
  • Brigitta G. Baumert
  • Roger Stupp
  • Thierry Gorlia
  • Michael Weller
  • David Capper
  • Andrey Korshunov
  • Christel Herold-Mende
  • Wolfgang Wick
  • David N. Louis
  • Andreas von DeimlingEmail author
Original Paper

Abstract

According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas comprised WHO grade II diffuse astrocytoma, IDH-mutant (AIIIDHmut), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIIIIDHmut), and WHO grade IV glioblastoma, IDH-mutant (GBMIDHmut). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined AIIIDHmut and AAIIIIDHmut have lost their significance. In contrast, GBMIDHmut still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation (CNV) profiles were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS) was CDKN2A/B homozygous deletion. Other parameters with major influence were necrosis and the total number of CNV. Proliferation as assessed by mitotic count, which is a key parameter in 2016 CNS WHO grading, was of only minor influence. Employing the parameters most relevant for OS in our discovery set, we developed two models for grading these tumors. These models performed significantly better than WHO grading in both the discovery and the validation sets. Our novel algorithms for grading IDH-mutant astrocytic gliomas overcome the challenges caused by introduction of IDH status into the WHO classification of diffuse astrocytic tumors. We propose that these revised approaches be used for grading of these tumors and incorporated into future WHO criteria.

Keywords

Astrocytoma Glioblastoma IDH Grading CDKN2A/B 

Notes

Acknowledgements

This work was supported by German Cancer Aid (70112371) to AvD and German Cancer Aid (110624) to WW and MW. We are indebted to Toshio Sasajima, Masaya Oda and Masataka Takahashi for support regarding clinical data acquisition. We thank Viktoria Zeller, Ulrike Lass, Antje Habel, Ulrike Vogel, Katja Brast, Kerstin Lindenberg, John Moyers and Jochen Meyer for excellent technical assistance. We also thank the Microarray unit of the Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), especially Matthias Schick, Roger Fischer, Nadja Wermke and Anja Schramm-Glück, for providing methylation services.

Supplementary material

401_2018_1849_MOESM1_ESM.pptx (353 kb)
Supplementary Fig. 1 Copy number summary plots. Vertical axis indicates percentage of patients affected. Horizontal axis refers to chromosomal localization. Dotted vertical lines indicate border between p and q arms. Data are given for three age groups (PPTX 352 kb)
401_2018_1849_MOESM2_ESM.pptx (281 kb)
Supplementary Fig. 2 Kaplan–Meier plots stratifying by unsupervised clustering in the discovery set (a), the HD validation set (b) and the EORTC validation set (c). Kaplan–Meier plots stratifying by the methylation based classifier in the discovery set (d), the HD validation set (e) and the EORTC validation set (f) (PPTX 280 kb)
401_2018_1849_MOESM3_ESM.pptx (151 kb)
Supplementary Fig. 3 OS of subgroups in Modelcombined. The patient set (n = 7) characterized by necrosis, absence of CDKN2A/B homozygous deletion and low CNVL exhibited only 2 events. While the corresponding curve (red) fits well the group of patients with intermediate OS, the number is too low for a clear statement (PPTX 150 kb)
401_2018_1849_MOESM4_ESM.pptx (166 kb)
Supplementary Fig. 4 Association of proliferation markers with CDKN2A/B status. (a) association with Ki67. (b) association with pHH3. Horizontal bars in box-plots correspond to median values (PPTX 166 kb)
401_2018_1849_MOESM5_ESM.pptx (101 kb)
Supplementary Fig. 5 OS of patients with IDH-mutant astrocytoma in association with RB pathway genes. (a) red -homozygous deletion of CDKN2A/B, black – wild type status. (b) red –homozygous deletion of RB1 or CDK4 amplification or CDK6 amplification, black – wild type status.. (a) red -homozygous deletion of CDKN2A/B or homozygous deletion of RB1 or CDK4 amplification or CDK6 amplification, black – wild type status for all (PPTX 100 kb)
401_2018_1849_MOESM6_ESM.pptx (196 kb)
Supplementary Fig. 6 Examples for CNP from astrocytic tumors exhibiting homozygous deletion of CDKN2A/B (PPTX 196 kb)
401_2018_1849_MOESM7_ESM.docx (66 kb)
Supplementary Table 1 Discovery set data employed in grading schemes for IDH-mutant astrocytoma. For each scheme lowest grade is indicated by green, intermediate grade by blue and highest grade by red color (DOCX 66 kb)
401_2018_1849_MOESM8_ESM.docx (14 kb)
Supplementary Table 2 Possible designation of IDH-mutant astrocytoma based on Modelpath in a future classification scheme (DOCX 13 kb)

References

  1. 1.
    Aoki K, Nakamura H, Suzuki H et al (2018) Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neurooncology 20:66–77Google Scholar
  2. 2.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602CrossRefPubMedGoogle Scholar
  3. 3.
    Burger PC, Vogel FS, Green SB, Strike TA (1985) Glioblastoma multiforme and anaplastic astrocytoma, pathologic criteria and prognostic implications. Cancer 56:1106–1111CrossRefPubMedGoogle Scholar
  4. 4.
    Cancer Genome Atlas Research N, Brat DJ, Verhaak RG et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRefGoogle Scholar
  5. 5.
    Capper D, Jones DTW, Sill M et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601CrossRefPubMedGoogle Scholar
  7. 7.
    Colman H, Giannini C, Huang L et al (2006) Assessment and prognostic significance of mitotic index using the mitosis marker phospho-histone H3 in low and intermediate-grade infiltrating astrocytomas. Am J Surg Pathol 30:657–664CrossRefPubMedGoogle Scholar
  8. 8.
    Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62:2152–2165CrossRefPubMedGoogle Scholar
  9. 9.
    Draaisma K, Wijnenga MM, Weenink B, Gao Y, Smid M, Robe P, van den Bent MJ, French PJ (2015) PI3 kinase mutations and mutational load as poor prognostic markers in diffuse glioma patients. Acta Neuropathol Commun 3:88CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Duregon E, Bertero L, Pittaro A et al (2016) Ki-67 proliferation index but not mitotic thresholds integrates the molecular prognostic stratification of lower grade gliomas. Oncotarget 7:21190–21198CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hsu DW, Louis DN, Efird JT, Hedley-Whyte ET (1997) Use of MIB-1 (Ki-67) immunoreactivity in differentiating grade II and grade III gliomas. J Neuropathol Exp Neurol 56:857–865CrossRefPubMedGoogle Scholar
  12. 12.
    Kernohan JW, Mabon RF, Svien HJ, Adson AW (1949) A simplified classification of gliomas. Proc Staff Meet Mayo Clin 24:71–75PubMedGoogle Scholar
  13. 13.
    Louis D, Ohgaki H, Wiestler O, Cavenee W (2007) World Health Organization classification of tumours of the central nervous system. In: Bosman F, Jaffe E, Lakhani S, Ohgaki H (eds) World Health Organization classification of tumours, 4th edn. IARC, LyonGoogle Scholar
  14. 14.
    Louis D, Ohgaki H, Wiestler O, Cavenee WK (2016) World Health Organization classification of tumours of the central nervous system. In: Bosman F, Jaffe E, Lakhani S, Ohgaki H (eds) World Health Organization classification of tumours revised, 4th edn. IARC, LyonGoogle Scholar
  15. 15.
    Louis DN, Edgerton S, Thor AD, Hedley-Whyte ET (1991) Proliferating cell nuclear antigen and Ki-67 immunohistochemistry in brain tumors: a comparative study. Acta Neuropathol 81:675–679CrossRefPubMedGoogle Scholar
  16. 16.
    Louis DN, Perry A, Burger P et al (2014) International Society of Neuropathology-Haarlem consensus guidelines, for nervous system tumor classification and grading. Brain Pathol 24:429–435CrossRefPubMedGoogle Scholar
  17. 17.
    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMedGoogle Scholar
  18. 18.
    Louis DN, von Deimling A (2017) Grading of diffuse astrocytic gliomas: Broders, Kernohan, Zulch, the WHO… and Shakespeare. Acta Neuropathol 134:517–520CrossRefPubMedGoogle Scholar
  19. 19.
    Louis DN, Wesseling P, Paulus W et al (2017) cIMPACT-NOW update 1: not otherwise specified (NOS) and not elsewhere classified (NEC). Acta Neuropathol 135:481–484CrossRefGoogle Scholar
  20. 20.
    Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pekmezci M, Rice T, Molinaro AM et al (2017) Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathol 133:1001–1016CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Perry A, Nobori T, Ru N, Anderl K, Borell TJ, Mohapatra G, Feuerstein BG, Jenkins RB, Carson DA (1997) Detection of p16 gene deletions in gliomas: a comparison of fluorescence in situ hybridization (FISH) versus quantitative PCR. J Neuropathol Exp Neurol 56:999–1008CrossRefPubMedGoogle Scholar
  24. 24.
    Pfaff E, Kessler T, Balasubramanian GP et al (2017) Feasibility of real-time molecular profiling for patients with newly diagnosed glioblastoma without MGMT promoter-hypermethylation—the NCT Neuro Master Match (N2M2) pilot study. Neuro Oncol.  https://doi.org/10.1093/neuonc/nox216 CrossRefGoogle Scholar
  25. 25.
    Purkait S, Jha P, Sharma MC, Suri V, Sharma M, Kale SS, Sarkar C (2013) CDKN2A deletion in pediatric versus adult glioblastomas and predictive value of p16 immunohistochemistry. Neuropathology 33:405–412CrossRefPubMedGoogle Scholar
  26. 26.
    Reis GF, Pekmezci M, Hansen HM et al (2015) CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II–III) astrocytomas. J Neuropathol Exp Neurol 74:442–452CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Reuss DE, Kratz A, Sahm F et al (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130:407–417CrossRefPubMedGoogle Scholar
  28. 28.
    Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Roy DM, Walsh LA, Desrichard A, Huse JT, Wu W, Gao J, Bose P, Lee W, Chan TA (2016) Integrated genomics for pinpointing survival loci within arm-level somatic copy number alterations. Cancer Cell 29:737–750CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sommer C, Strähle C, Köthe U, Hamprecht FA (2011) Ilastik: interactive learning and segmentation toolkit. In: Eighth IEEE international symposium on biomedical imaging (ISBI). IEEE, Chicago, pp 230–233Google Scholar
  32. 32.
    Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437CrossRefPubMedGoogle Scholar
  33. 33.
    Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMedGoogle Scholar
  34. 34.
    von Deimling A, Ono T, Shirahata M, Louis D (2018) Grading of diffuse astrocytic gliomas: a review of studies before and after the advent of IDH testing. Semin Neurol 38:19–23CrossRefGoogle Scholar
  35. 35.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:653–656Google Scholar
  36. 36.
    Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27:5874–5880CrossRefPubMedGoogle Scholar
  37. 37.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zülch KJ (1979) Histological typing of tumours of the central nervous system. Who’s Who, LondonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mitsuaki Shirahata
    • 1
    • 2
  • Takahiro Ono
    • 1
    • 3
  • Damian Stichel
    • 4
  • Daniel Schrimpf
    • 1
    • 4
  • David E. Reuss
    • 1
    • 4
  • Felix Sahm
    • 1
    • 4
  • Christian Koelsche
    • 1
    • 4
  • Annika Wefers
    • 1
    • 4
  • Annekathrin Reinhardt
    • 1
    • 4
  • Kristin Huang
    • 1
    • 4
  • Philipp Sievers
    • 1
    • 4
  • Hiroaki Shimizu
    • 3
  • Hiroshi Nanjo
    • 5
    • 6
  • Yusuke Kobayashi
    • 2
  • Yohei Miyake
    • 2
  • Tomonari Suzuki
    • 2
  • Jun-ichi Adachi
    • 2
  • Kazuhiko Mishima
    • 2
  • Atsushi Sasaki
    • 7
  • Ryo Nishikawa
    • 2
  • Melanie Bewerunge-Hudler
    • 8
  • Marina Ryzhova
    • 9
  • Oksana Absalyamova
    • 9
  • Andrey Golanov
    • 9
  • Peter Sinn
    • 10
  • Michael Platten
    • 11
  • Christine Jungk
    • 12
  • Frank Winkler
    • 13
    • 14
  • Antje Wick
    • 13
    • 14
  • Daniel Hänggi
    • 15
  • Andreas Unterberg
    • 12
  • Stefan M. Pfister
    • 16
    • 17
    • 18
  • David T. W. Jones
    • 16
    • 17
  • Martin van den Bent
    • 19
  • Monika Hegi
    • 20
    • 21
  • Pim French
    • 19
  • Brigitta G. Baumert
    • 22
  • Roger Stupp
    • 23
  • Thierry Gorlia
    • 24
  • Michael Weller
    • 25
  • David Capper
    • 1
    • 26
    • 27
    • 28
  • Andrey Korshunov
    • 1
    • 4
  • Christel Herold-Mende
    • 12
  • Wolfgang Wick
    • 13
    • 14
  • David N. Louis
    • 29
  • Andreas von Deimling
    • 1
    • 4
    • 30
    Email author
  1. 1.Department of Neuropathology, Institute of PathologyHeidelberg University HospitalHeidelbergGermany
  2. 2.Department of Neuro-Oncology/NeurosurgerySaitama Medical University International Medical CenterHidakaJapan
  3. 3.Department of NeurosurgeryAkita University Graduate School of MedicineAkitaJapan
  4. 4.Clinical Cooperation Unit NeuropathologyGerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
  5. 5.Akita University Hospital Division of Clinical PathologyAkitaJapan
  6. 6.Medical CenterHidakaJapan
  7. 7.Department of PathologySaitama Medical University International Medical CenterHidakaJapan
  8. 8.Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ)HeidelbergGermany
  9. 9.NN Burdenko Neurosurgical InstituteMoscowRussia
  10. 10.Department of PathologyUniversity Hospital HeidelbergHeidelbergGermany
  11. 11.Department of NeurologyUniversitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
  12. 12.Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
  13. 13.Department of NeurologyHeidelberg University HospitalHeidelbergGermany
  14. 14.Clinical Cooperation Unit NeurooncologyGerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
  15. 15.Department of NeurosurgeryUniversity Medical Center Mannheim, University of HeidelbergMannheimGermany
  16. 16.Hopp Children’s Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
  17. 17.Division of Pediatric NeurooncologyGerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
  18. 18.Department of Pediatric Oncology, Hematology and ImmunologyUniversity Hospital HeidelbergHeidelbergGermany
  19. 19.The Brain Tumor Center at Erasmus MC Cancer InstituteRotterdamThe Netherlands
  20. 20.Laboratory of Brain Tumor Biology and Genetics, Neuroscience Research CenterLausanne University HospitalLausanneSwitzerland
  21. 21.Division of NeurosurgeryLausanne University HospitalLausanneSwitzerland
  22. 22.Department of Radiation-Oncology (MAASTRO Clinic) and GROW (School for Oncology)Maastricht University Medical CentreMaastrichtThe Netherlands
  23. 23.Malnati Brain Tumor Institute of the Lurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoUSA
  24. 24.EORTC HeadquarterBrusselsBelgium
  25. 25.Department of NeurologyUniversity Hospital and University of ZurichZurichSwitzerland
  26. 26.German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ) HeidelbergBerlinGermany
  27. 27.Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu BerlinBerlinGermany
  28. 28.Department of NeuropathologyBerlin Institute of HealthBerlinGermany
  29. 29.Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  30. 30.Department for Neuropathology and CCU NeuropathologyUniversity of Heidelberg and DKFZHeidelbergGermany

Personalised recommendations