Acta Neuropathologica

, Volume 134, Issue 6, pp 851–868 | Cite as

The choroid plexus is a key cerebral invasion route for T cells after stroke

  • Gemma Llovera
  • Corinne Benakis
  • Gaby Enzmann
  • Ruiyao Cai
  • Thomas Arzberger
  • Alireza Ghasemigharagoz
  • Xiang Mao
  • Rainer Malik
  • Ivana Lazarevic
  • Sabine Liebscher
  • Ali Ertürk
  • Lilja Meissner
  • Denis Vivien
  • Christof Haffner
  • Nikolaus Plesnila
  • Joan Montaner
  • Britta Engelhardt
  • Arthur LieszEmail author
Original Paper


Neuroinflammation contributes substantially to stroke pathophysiology. Cerebral invasion of peripheral leukocytes—particularly T cells—has been shown to be a key event promoting inflammatory tissue damage after stroke. While previous research has focused on the vascular invasion of T cells into the ischemic brain, the choroid plexus (ChP) as an alternative cerebral T-cell invasion route after stroke has not been investigated. We here report specific accumulation of T cells in the peri-infarct cortex and detection of T cells as the predominant population in the ipsilateral ChP in mice as well as in human post-stroke autopsy samples. T-cell migration from the ChP to the peri-infarct cortex was confirmed by in vivo cell tracking of photoactivated T cells. In turn, significantly less T cells invaded the ischemic brain after photothrombotic lesion of the ipsilateral ChP and in a stroke model encompassing ChP ischemia. We detected a gradient of CCR2 ligands as the potential driving force and characterized the neuroanatomical pathway for the intracerebral migration. In summary, our study demonstrates that the ChP is a key invasion route for post-stroke cerebral T-cell invasion and describes a CCR2-ligand gradient between cortex and ChP as the potential driving mechanism for this invasion route.



This work was funded by the excellence cluster of the German research foundation “Munich Cluster for Systems Neurology (SyNergy)” and the German Research foundation (DFG, LI-2534/1-1 and LI-2534/2-1) to A.L. The Swiss National Science Foundation (ProDoc Cell Migration - RM 1 and 3) to BE, the Swiss Heart Foundation to BE and GE. CCR2RFP/RFPCX3CR1GFP/+ were kindly donated by Israel F. Charo (University of California, San Francisco, USA) and Richard Ransohoff (Biogen Idec, Boston, USA). We thank the Human Brain and Spinal Fluid Resource Center, VA West Los Angeles Healthcare Center (Los Angeles, USA) for providing human brain samples. The authors would like to thank Kerstin Thuß-Silczakfor excellent technical assistance, Dr. Urban Deutsch for maintaining transgenic mouse colonies at the University of Bern, and Dr. Farida Hellal for advice on histological techniques.

Author contributions

G.L., C.B., X.M., G.E., R.C., T.A., I.L., S.L., and L.M. performed experiments; G.L., C.B., A.G., T.A., R.M., A.E., N.P., B.E. and A.L. analyzed data; J.M. provided critical material and analyzed data; D.V., C.H., N.P., B.E. and G.L. contributed critical input to the manuscript; A.L. initiated the study, designed experiments and wrote the manuscript.

Supplementary material

401_2017_1758_MOESM1_ESM.pdf (616 kb)
Supplementary material 1 (PDF 615 kb)


  1. 1.
    Becker K, Kindrick D, Relton J, Harlan J, Winn R (2001) Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 32:206–211CrossRefPubMedGoogle Scholar
  2. 2.
    Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG et al (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 22:516–523. doi: 10.1038/nm.4068 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Canazza A, Minati L, Boffano C, Parati E, Binks S (2014) Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front Neurol 5:19. doi: 10.3389/fneur.2014.00019 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R (2012) The immunology of acute stroke. Nat Rev Neurol 8:401–410. doi: 10.1038/nrneurol.2012.98 CrossRefPubMedGoogle Scholar
  5. 5.
    Chu HX, Kim HA, Lee S, Broughton BR, Drummond GR, Sobey CG (2016) Evidence of CCR2-independent transmigration of Ly6C(hi) monocytes into the brain after permanent cerebral ischemia in mice. Brain Res 1637:118–127. doi: 10.1016/j.brainres.2016.02.030 CrossRefPubMedGoogle Scholar
  6. 6.
    Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV, Broughton BR, Drummond GR et al (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 34:450–459. doi: 10.1038/jcbfm.2013.217 CrossRefGoogle Scholar
  7. 7.
    Clarkson BD, Walker A, Harris MG, Rayasam A, Sandor M, Fabry Z (2015) CCR2-dependent dendritic cell accumulation in the central nervous system during early effector experimental autoimmune encephalomyelitis is essential for effector T cell restimulation in situ and disease progression. J Immunol 194:531–541. doi: 10.4049/jimmunol.1401320 CrossRefPubMedGoogle Scholar
  8. 8.
    Dirnagl U (2006) Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 26:1465–1478. doi: 10.1038/sj.jcbfm.9600298 CrossRefPubMedGoogle Scholar
  9. 9.
    Dirnagl U (2014) Modeling immunity and inflammation in stroke: can mice be trusted? Stroke J Cereb Circ 45:e177–e178. doi: 10.1161/STROKEAHA.114.005640 CrossRefGoogle Scholar
  10. 10.
    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623. doi: 10.1016/S0140-6736(08)60694-7 CrossRefPubMedGoogle Scholar
  11. 11.
    Dorr A, Sled JG, Kabani N (2007) Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. NeuroImage 35:1409–1423. doi: 10.1016/j.neuroimage.2006.12.040 CrossRefPubMedGoogle Scholar
  12. 12.
    Elkins J (2016) Primary results of the ACTION trial of natalizumab in acute ischemic stroke (AIS). International stroke conferenceGoogle Scholar
  13. 13.
    Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 33:579–589. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  14. 14.
    Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808. doi: 10.1038/nm.2399 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Inose Y, Kato Y, Kitagawa K, Uchiyama S, Shibata N (2015) Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes. Neuropathology 35:209–223. doi: 10.1111/neup.12182 CrossRefPubMedGoogle Scholar
  16. 16.
    Investigators EAST (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57:1428–1434CrossRefGoogle Scholar
  17. 17.
    Kuscher K, Danelon G, Paoletti S, Stefano L, Schiraldi M, Petkovic V, Locati M, Gerber BO, Uguccioni M (2009) Synergy-inducing chemokines enhance CCR2 ligand activities on monocytes. Eur J Immunol 39:1118–1128. doi: 10.1002/eji.200838906 CrossRefPubMedGoogle Scholar
  18. 18.
    Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A et al (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain J Neurol 134:704–720. doi: 10.1093/brain/awr008 CrossRefGoogle Scholar
  19. 19.
    Lim JK, Obara CJ, Rivollier A, Pletnev AG, Kelsall BL, Murphy PM (2011) Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J Immunol 186:471–478. doi: 10.4049/jimmunol.1003003 CrossRefPubMedGoogle Scholar
  20. 20.
    Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C, Zanier ER, Mamrak U, Rex A, Party H et al (2015) Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia. Sci Transl Med 7:299ra121. doi: 10.1126/scitranslmed.aaa9853 CrossRefPubMedGoogle Scholar
  21. 21.
    Llovera G, Roth S, Plesnila N, Veltkamp R, Liesz A (2014) Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp JoVE:e51729. doi: 10.3791/51729 Google Scholar
  22. 22.
    Louveau A, Harris TH, Kipnis J (2015) Revisiting the mechanisms of CNS immune privilege. Trends Immunol 36:569–577. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16:445–457. doi: 10.1038/nrn3921 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10:471–480. doi: 10.1016/S1474-4422(11)70066-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198. doi: 10.1016/j.neuron.2010.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, Konig R, Hutten H, Etemire E, Mann L, Klingberg A, Fischer T et al (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129:259–277. doi: 10.1007/s00401-014-1355-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Nibbs RJ, Graham GJ (2013) Immune regulation by atypical chemokine receptors. Nat Rev Immunol 13:815–829CrossRefPubMedGoogle Scholar
  28. 28.
    Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P, Plesnila N, Dichgans M, Hellal F, Erturk A (2016) Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 13:859–867. doi: 10.1038/nmeth.3964 CrossRefPubMedGoogle Scholar
  29. 29.
    Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635. doi: 10.1038/nri3265 CrossRefPubMedGoogle Scholar
  30. 30.
    Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581. doi: 10.1038/nri1130 CrossRefPubMedGoogle Scholar
  31. 31.
    Relton JK, Sloan KE, Frew EM, Whalley ET, Adams SP, Lobb RR (2001) Inhibition of alpha4 integrin protects against transient focal cerebral ischemia in normotensive and hypertensive rats. Stroke 32:199–205CrossRefPubMedGoogle Scholar
  32. 32.
    Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5:e13693. doi: 10.1371/journal.pone.0013693 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schwartz M, Baruch K (2014) The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33(1):7–22. doi: 10.1002/embj.201386609 CrossRefPubMedGoogle Scholar
  34. 34.
    Schwarzmaier SM, de Chaumont C, Balbi M, Terpolilli NA, Kleinschnitz C, Gruber A, Plesnila N (2016) The formation of microthrombi in parenchymal microvessels after traumatic brain injury is independent of coagulation factor XI. J Neurotrauma 33:1634–1644. doi: 10.1089/neu.2015.4173 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13:206–218. doi: 10.1038/nri3391 CrossRefPubMedGoogle Scholar
  36. 36.
    Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–569. doi: 10.1016/j.immuni.2013.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Steffen BJ, Butcher EC, Engelhardt B (1994) Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 145:189–201PubMedPubMedCentralGoogle Scholar
  38. 38.
    Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493–506. doi: 10.1083/jcb.201412147 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tymianski M (2015) Neuroprotective therapies: preclinical reproducibility is only part of the problem. Sci Transl Med 7:299. doi: 10.1126/scitranslmed.aac9412 CrossRefGoogle Scholar
  40. 40.
    Umekawa T, Osman AM, Han W, Ikeda T, Blomgren K (2015) Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia. Glia 63:2220–2230. doi: 10.1002/glia.22887 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Urra X, Miro F, Chamorro A, Planas AM (2014) Antigen-specific immune reactions to ischemic stroke. Front Cell Neurosci 8:278. doi: 10.3389/fncel.2014.00278 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592–605. doi: 10.1016/j.cell.2010.10.032 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Waggott D, Chu K, Yin S, Wouters BG, Liu FF, Boutros PC (2012) NanoStringNorm: an extensible R package for the pre-processing of NanoString mRNA and miRNA data. Bioinformatics 28:1546–1548. doi: 10.1093/bioinformatics/bts188 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68. doi: 10.1016/j.jneuroim.2006.11.014 CrossRefPubMedGoogle Scholar
  45. 45.
    Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Investig 120:1368–1379. doi: 10.1172/JCI41911 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wolburg K, Gerhardt H, Schulz M, Wolburg H, Engelhardt B (1999) Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tissue Res 296:259–269CrossRefPubMedGoogle Scholar
  47. 47.
    Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, Grabe N, Veltkamp R (2013) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23:34–44. doi: 10.1111/j.1750-3639.2012.00614.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Gemma Llovera
    • 1
    • 2
  • Corinne Benakis
    • 1
  • Gaby Enzmann
    • 3
  • Ruiyao Cai
    • 1
    • 2
  • Thomas Arzberger
    • 4
    • 5
  • Alireza Ghasemigharagoz
    • 1
  • Xiang Mao
    • 1
  • Rainer Malik
    • 1
  • Ivana Lazarevic
    • 3
  • Sabine Liebscher
    • 2
    • 6
  • Ali Ertürk
    • 1
    • 2
  • Lilja Meissner
    • 1
  • Denis Vivien
    • 7
  • Christof Haffner
    • 1
  • Nikolaus Plesnila
    • 1
    • 2
  • Joan Montaner
    • 8
  • Britta Engelhardt
    • 3
  • Arthur Liesz
    • 1
    • 2
    Email author
  1. 1.Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenMunichGermany
  2. 2.Munich Cluster for Systems Neurology (SyNergy)MunichGermany
  3. 3.Theodor Kocher InstituteUniversity of BernBernSwitzerland
  4. 4.Center for Neuropathology and Prion ResearchLudwig-Maximilians-UniversitätMunichGermany
  5. 5.Department of Psychiatry and PsychotherapyLudwig-Maximilians-UniversitätMunichGermany
  6. 6.Institute of Clinical Neuroimmunology, Klinikum der Universität MünchenLudwig-Maximilians-UniversityMunichGermany
  7. 7.INSERM, UMR-S U919, Institut National de la Santé Et de la Recherche Médicale (INSERM), Team Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERONUniversity Caen Basse-NormandieCaen CedexFrance
  8. 8.Neurovascular Research Laboratory, Vall d’Hebron Research Institute (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations