Acta Neuropathologica

, Volume 134, Issue 3, pp 441–458 | Cite as

Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood

  • Nora HagemeyerEmail author
  • Klara-Maria Hanft
  • Maria-Anna Akriditou
  • Nicole Unger
  • Eun S. Park
  • E. Richard Stanley
  • Ori Staszewski
  • Leda Dimou
  • Marco PrinzEmail author
Original Paper


Whereas microglia involvement in virtually all brain diseases is well accepted their role in the control of homeostasis in the central nervous system (CNS) is mainly thought to be the maintenance of neuronal function through the formation, refinement, and monitoring of synapses in both the developing and adult brain. Although the prenatal origin as well as the neuron-centered function of cortical microglia has recently been elucidated, much less is known about a distinct amoeboid microglia population formerly described as the “fountain of microglia” that appears only postnatally in myelinated regions such as corpus callosum and cerebellum. Using large-scale transcriptional profiling, fate mapping, and genetic targeting approaches, we identified a unique molecular signature of this microglia subset that arose from a CNS endogenous microglia pool independent from circulating myeloid cells. Microglia depletion experiments revealed an essential role of postnatal microglia for the proper development and homeostasis of oligodendrocytes and their progenitors. Our data provide new cellular and molecular insights into the myelin-supporting function of microglia in the normal CNS.


Amoeboid microglia Myelinogenesis Oligodendrocytes Oligodendrocyte progenitors Development 



We thank Margarethe Ditter, Maria Oberle, Dr. Alexandra Müller, and Katrin Seidel for excellent technical assistance, Stefan Bohlen for the Imaris reconstructions, Antigoni Triantafyllopoulou for providing Nr4a1 / mice, Hauke Werner and Sandra Goebbels for providing NG2 YFP/WT mice, Peter Wieghofer for establishing microglia depleting experiments using BLZ945, Hans Christian Probst for providing Cd11c CreER mice, Mathias Jucker for the Ccr2 RFP/WT mice, and Jaclyn Wamsteeker Cusulin for critically reading and editing the manuscript. We apologize to colleagues whose work could not be cited because of space constraints. M.P. is supported by the BMBF-funded competence network of multiple sclerosis (KKNMS), the Sobek-Stiftung, the DFG (SFB 992, SFB1140, SFB/TRR167, Reinhart-Koselleck-Grant), the ERA-Net NEURON initiative “NEURO-IFN”, and the Sonderlinie Hochschulmedizin, project “neuroinflammation in neurodegeneration”. ESP and ERS are supported by NIH grant R01 NS091519.

Author contribution

NH designed and conducted the experiments. KH performed immunofluorescent analysis related to the cell number during development and proliferation. MAA performed analysis of electron microscope data. NU performed experiments with Sox10-iCreERT2 × CAG-eGFP mice and OPC cultures. ESP provided Csf1r / material. LD and ERS provided scientific input and edited the manuscript. OS analyzed the microarray data. NH and MP supervised the project and wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

401_2017_1747_MOESM1_ESM.jpg (141 kb)
Figure S1 (related to Fig. 1): High proliferation rate of postnatal microglia. (a) Scheme of experimental setup. Cx3cr1 GFP/Wt mice were intraperitoneally injected (i.p.) with 5-Ethynyl-2′-deoxyuridine (EdU) at P0-P3 or P4-P6. Analysis was performed on day P7, P10, and P21. (b) Quantification of EdU+/CX3CR1+ microglia in the corpus callosum, cortex, and cerebellum at the indicated time points. EdU was applied at P0-P3. Each symbol represents one mouse. Mean ± SEM are shown. (c) Quantification of EdU+/CX3CR1+ microglia in the corpus callosum, cortex, and cerebellum at the indicated time points. EdU was applied at P4-P6. Each symbol represents one mouse. Mean ± SEM are shown
401_2017_1747_MOESM2_ESM.jpg (1.2 mb)
Figure S2 (related to Fig. 1): Genes related to myelination and axogenesis are highly upregulated in the postnatal brain. (a)(b) Hierarchical clustering created on the most significantly differentially expressed genes (cut off adjusted to p value < 0.01) related to the GO-terms myelination and axogenesis between microglia from the corpus callosum and cortex at postnatal day 7 and at P42 (adult) (a) or between microglia from the corpus callosum and cortex only at postnatal day 7 (b). Heat map displays row z-score values from red to blue via white. (c) Immunofluorescent images of a P8 Cd11c CreER :R26-tomato mouse injected with tamoxifen at P3-P7. Representation of the accumulation of CD11c+ (red) Iba-1+ microglia (green) specifically in white matter regions (corpus callosum and cerebellum; indicated by arrows). Scale bar = 200 µm upper image, 50 µm: lower images
401_2017_1747_MOESM3_ESM.jpg (197 kb)
Figure S3 (related to Fig. 3): Purity of sorted microglia and oligodendrocyte progenitors. (a) Representative flow cytometry blots showing the sorting strategy for CD45+CD11b+ microglia (left) and PDGFRα+/NG2+ oligodendrocyte progenitors (OPCs; right) used for the gene expression analysis in (b). Cells were pre-gated on living cells, single cells, and Gr-1 cells. (b) Quantitative RT-PCR of the genes allograft inflammatory factor 1 (Aif1), integrin subunit alpha M (Itgam), adhesion G protein-coupled receptor E1 (Emr1), purinergic receptor P2Y12 (p2ry12), chondroitin sulfate proteoglycan 4 (Cspg4), platelet derived growth factor receptor alpha (Pdgfra), and SRY-Box 10 (Sox10). Data are normalized to Gapdh and β-Actin and presented normed to microglia. Bars represent mean ± SEM
401_2017_1747_MOESM4_ESM.jpg (717 kb)
Figure S4 (related to Fig. 3): Olig2 + oligodendrocyte numbers upon microglia depletion. Quantification of Olig2+ oligodendrocytes in the corpus callosum, cortex, and cerebellum at P8, 1 day after BLZ945-induced depletion of microglia at P2, P4, P6, and P7. n = 3 - 5; samples from two independent experiments. Significant differences were examined by an unpaired t test and marked with asterisks (*P < 0.05, **P < 0.01)


  1. 1.
    Amit I, Winter DR, Jung S (2016) The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat Immunol 17:18–25CrossRefPubMedGoogle Scholar
  2. 2.
    Banisadr G, Frederick TJ, Freitag C, Ren D, Jung H, Miller SD, Miller RJ (2011) The role of CXCR4 signaling in the migration of transplanted oligodendrocyte progenitors into the cerebral white matter. Neurobiol Dis 44:19–27. doi: 10.1016/j.nbd.2011.05.019 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, Klein M, Blank T, Yona S, Wolf Y, Mack M, Pinteaux E, Müller W, Zipp F, Binder H, Bopp T, Prinz M, Jung S, Waisman A (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43:92–106. doi: 10.1016/j.immuni.2015.06.012 CrossRefPubMedGoogle Scholar
  4. 4.
    Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31:149–160. doi: 10.1016/j.mcn.2005.10.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Chitu V, Gokhan S, Nandi S, Mehler MF, Stanley ER (2016) Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci 39:378–393. doi: 10.1016/j.tins.2016.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Colonna M, Butovsky O (2016) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. doi: 10.1146/annurev-immunol-051116-052358 Google Scholar
  7. 7.
    De Jager PL, Jia X, Wang J, de Bakker PIW, Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S, Baranzini SE, McCauley JL, Pericak-Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C, McArdle WL, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer SJ, Weiner HL, Hauser SL, Hafler DA, Oksenberg JR (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41:776–782. doi: 10.1038/ng.401 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397. doi: 10.1016/j.neuron.2014.02.040 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, Shikatani EA, El-Maklizi M, Williams JW, Robins L, Li C, Lewis B, Yun TJ, Lee JS, Wieghofer P, Khattar R, Farrokhi K, Byrne J, Ouzounian M, Zavitz CCJ, Levy GA, Bauer CMT, Libby P, Husain M, Swirski FK, Cheong C, Prinz M, Hilgendorf I, Randolph GJ, Epelman S, Gramolini AO, Cybulsky MI, Rubin BB, Robbins CS (2016) Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat Immunol 17:159–168CrossRefPubMedGoogle Scholar
  10. 10.
    Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6:e26317. doi: 10.1371/journal.pone.0026317 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T (2008) TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56:1438–1447. doi: 10.1002/glia.20710 CrossRefPubMedGoogle Scholar
  13. 13.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. doi: 10.1126/science.1194637 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Goldmann T, Wieghofer P, Jordao MJC, Prutek F, Hagemeyer N, Frenzel K, Amann L, Staszewski O, Kierdorf K, Krueger M, Locatelli G, Hochgerner H, Zeiser R, Epelman S, Geissmann F, Priller J, Rossi FMV, Bechmann I, Kerschensteiner M, Linnarsson S, Jung S, Prinz M (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17:797–805CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Goldmann T, Zeller N, Raasch J, Kierdorf K, Frenzel K, Ketscher L, Basters A, Staszewski O, Brendecke SM, Spiess A, Tay TL, Kreutz C, Timmer J, Mancini GM, Blank T, Fritz G, Biber K, Lang R, Malo D, Merkler D, Heikenwälder M, Knobeloch K-P, Prinz M (2015) USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J 34:1612–1629. doi: 10.15252/embj.201490791 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers KM, McColl BW (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643. doi: 10.1016/j.neuron.2013.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert J-C, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St. George-Hyslop P, Singleton A, Hardy J (2012) TREM2 Variants in Alzheimer’s Disease. N Engl J Med 368:117–127. doi: 10.1056/NEJMoa1211851 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hagemeyer N, Goebbels S, Papiol S, Kästner A, Hofer S, Begemann M, Gerwig UC, Boretius S, Wieser GL, Ronnenberg A, Gurvich A, Heckers SH, Frahm J, Nave K-A, Ehrenreich H (2012) A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol Med 4:528–539. doi: 10.1002/emmm.201200230 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hagemeyer N, Kierdorf K, Frenzel K, Xue J, Ringelhan M, Abdullah Z, Godin I, Wieghofer P, Costa Jordão MJ, Ulas T, Yorgancioglu G, Rosenbauer F, Knolle PA, Heikenwalder M, Schultze JL, Prinz M (2016) Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO J 35:1730–1744. doi: 10.15252/embj.201693801 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hickman SE, Kingery ND, Ohsumi T, Borowsky M, Wang L, Means TK, Khoury JE (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. doi: 10.1038/nn.3554 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435. doi: 10.1038/ng.803 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, Wes PD, Möller T, Orre M, Kamphuis W, Hol EM, Boddeke EWGM, Eggen BJL (2015) Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 3:31. doi: 10.1186/s40478-015-0203-5 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hristova M, Cuthill D, Zbarsky V, Acosta-Saltos A, Wallace A, Blight K, Buckley SMK, Peebles D, Heuer H, Waddington SN, Raivich G (2010) Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 58:11–28. doi: 10.1002/glia.20896 CrossRefPubMedGoogle Scholar
  25. 25.
    Imamoto K, Leblond CP (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats II. Origin of microglial cells. J Comp Neurol 180:139–163. doi: 10.1002/cne.901800109 CrossRefPubMedGoogle Scholar
  26. 26.
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Karram K, Goebbels S, Schwab M, Jennissen K, Seifert G, Steinhäuser C, Nave K-A, Trotter J (2008) NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse. Genesis 46:743–757. doi: 10.1002/dvg.20440 CrossRefPubMedGoogle Scholar
  28. 28.
    Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280. doi: 10.1038/nn.3318 CrossRefPubMedGoogle Scholar
  29. 29.
    Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435. doi: 10.1523/JNEUROSCI.3257-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ling EA (1979) Transformation of monocytes into amoeboid microglia in the corpus callosum of postnatal rats, as shown by labelling monocytes by carbon particles. J Anat 128:847–858PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mason JL, Jones JJ, Taniike M, Morell P, Suzuki K, Matsushima GK (2000) Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J Neurosci Res 61:251–262. doi: 10.1002/1097-4547(20000801)61:3<251:AID-JNR3>3.0.CO;2-W CrossRefPubMedGoogle Scholar
  32. 32.
    Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda H, David E, Zelada González F, Perrin P, Keren-Shaul H, Gury M, Lara-Astaiso D, Thaiss CA, Cohen M, Bahar Halpern K, Baruch K, Deczkowska A, Lorenzo-Vivas E, Itzkovitz S, Elinav E, Sieweke MH, Schwartz M, Amit I (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science. doi: 10.1126/science.aad8670 PubMedGoogle Scholar
  33. 33.
    Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145. doi: 10.1038/35100529 CrossRefPubMedGoogle Scholar
  34. 34.
    Meuwissen MEC, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD, Li Z, van Unen L, Heijsman D, Goldmann T, Lequin MH, Kros JM, Stam W, Hermann M, Willemsen R, Brouwer RWW, Van Ijcken WFJ, Martin-Fernandez M, de Coo I, Dudink J, de Vries FAT, Bertoli Avella A, Prinz M, Crow YJ, Verheijen FW, Pellegrini S, Bogunovic D, Mancini GMS (2016) Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213:1163. doi: 10.1084/jem.20151529 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mildner A, Mack M, Schmidt H, Brück W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M (2009) CCR2+ Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:2487–2500. doi: 10.1093/brain/awp144 CrossRefPubMedGoogle Scholar
  36. 36.
    Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch U-K, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553. doi: 10.1038/nn2015 CrossRefPubMedGoogle Scholar
  37. 37.
    Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C (2013) M2 microglia/macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218. doi: 10.1038/nn.3469 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE (2011) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188:29. doi: 10.4049/jimmunol.1100421 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N, Frenzel K, Pinto AR, Klapproth K, Henri S, Malissen B, Rodewald H-R, Rosenthal NA, Bajenoff M, Prinz M, Jung S, Sieweke MH (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211:2151–2158. doi: 10.1084/jem.20140639 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31:274–295. doi: 10.1007/s00357-014-9161-z CrossRefGoogle Scholar
  41. 41.
    Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441. doi: 10.1038/ng.801 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nandi S, Gokhan S, Dai X-M, Wei S, Enikolopov G, Lin H, Mehler MF, Stanley ER (2012) The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol 367:100–113. doi: 10.1016/j.ydbio.2012.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nave K-A, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. doi: 10.1146/annurev-cellbio-100913-013101 CrossRefPubMedGoogle Scholar
  44. 44.
    Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, Bianchin M, Bird T, Miranda R, Salmaggi A, Tranebjærg L, Konttinen Y, Peltonen L (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–662. doi: 10.1086/342259 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. doi: 10.1126/science.1202529 CrossRefPubMedGoogle Scholar
  46. 46.
    Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR III, Lafaille JJ, Hempstead BL, Littman DR, Gan W-B (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. doi: 10.1016/j.cell.2013.11.030 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci USA 107:11062–11067. doi: 10.1073/pnas.1006301107 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Peri F, Nüsslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133:916–927. doi: 10.1016/j.cell.2008.04.037 CrossRefPubMedGoogle Scholar
  49. 49.
    Poggi G, Boretius S, Möbius W, Moschny N, Baudewig J, Ruhwedel T, Hassouna I, Wieser GL, Werner HB, Goebbels S, Nave K, Ehrenreich H (2016) Cortical network dysfunction caused by a subtle defect of myelination. Glia 64:2025–2040. doi: 10.1002/glia.23039 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, Gilfillan S, Colonna M (2015) TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest 125:2161–2170. doi: 10.1172/JCI77983 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Prinz M, Erny D, Hagemeyer N (2017) Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 18:385CrossRefPubMedGoogle Scholar
  52. 52.
    Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. doi: 10.1038/nrn3722 CrossRefPubMedGoogle Scholar
  53. 53.
    Prinz M, Priller J (2017) The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci 20:136–144CrossRefPubMedGoogle Scholar
  54. 54.
    R Core Team R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  55. 55.
    Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, Adamson J, Kouri N, Sundal C, Shuster EA, Aasly J, MacKenzie J, Roeber S, Kretzschmar HA, Boeve BF, Knopman DS, Petersen RC, Cairns NJ, Ghetti B, Spina S, Garbern J, Tselis AC, Uitti R, Das P, Van Gerpen JA, Meschia JF, Levy S, Broderick DF, Graff-Radford N, Ross OA, Miller BB, Swerdlow RH, Dickson DW, Wszolek ZK (2012) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205. doi: 10.1038/ng.1027 CrossRefGoogle Scholar
  56. 56.
    Ransohoff RM, Perry Hugh H (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. doi: 10.1146/annurev.immunol.021908.132528 CrossRefPubMedGoogle Scholar
  57. 57.
    Rezaie P, Dean A (2002) Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 22:106–132. doi: 10.1046/j.1440-1789.2002.00438.x CrossRefPubMedGoogle Scholar
  58. 58.
    Rio-Hortega P (1932) Microglia. Cytol Cell Pathol Nerv Syst 2:482–534Google Scholar
  59. 59.
    Roumier A, Béchade C, Poncer J-C, Smalla K-H, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24:11421. doi: 10.1523/JNEUROSCI.2251-04.2004 CrossRefPubMedGoogle Scholar
  60. 60.
    Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou C-L, Ransohoff RM, Charo IF (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5:e13693. doi: 10.1371/journal.pone.0013693 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, Edinger AL, Jung S, Rossner MJ, Simons M (2016) Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci 19:995–998CrossRefPubMedGoogle Scholar
  62. 62.
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. doi: 10.1016/j.neuron.2012.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Scheffel J, Regen T, Van Rossum D, Seifert S, Ribes S, Nau R, Parsa R, Harris RA, Boddeke HWGM, Chuang H-N, Pukrop T, Wessels JT, Jürgens T, Merkler D, Brück W, Schnaars M, Simons M, Kettenmann H, Hanisch U-K (2012) Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60:1930–1943. doi: 10.1002/glia.22409 CrossRefPubMedGoogle Scholar
  64. 64.
    Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SEW, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90. doi: 10.1126/science.1219179 CrossRefPubMedGoogle Scholar
  65. 65.
    Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34:2231–2243. doi: 10.1523/JNEUROSCI.1619-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495. doi: 10.1016/j.stem.2010.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Simon C, Lickert H, Götz M, Dimou L (2012) Sox10-iCreERT2: a mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis 50:506–515. doi: 10.1002/dvg.22003 CrossRefPubMedGoogle Scholar
  68. 68.
    Skripuletz T, Miller E, Moharregh-Khiabani D, Blank A, Pul R, Gudi V, Trebst C, Stangel M (2010) Beneficial effects of minocycline on cuprizone induced cortical demyelination. Neurochem Res 35:1422–1433. doi: 10.1007/s11064-010-0202-7 CrossRefPubMedGoogle Scholar
  69. 69.
    Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527. doi: 10.1371/journal.pbio.1000527 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551. doi: 10.1038/nn.3358 CrossRefPubMedGoogle Scholar
  71. 71.
    Viganò F, Schneider S, Cimino M, Bonfanti E, Gelosa P, Sironi L, Abbracchio MP, Dimou L (2016) GPR17 expressing NG2-Glia: oligodendrocyte progenitors serving as a reserve pool after injury. Glia 64:287–299. doi: 10.1002/glia.22929 CrossRefPubMedGoogle Scholar
  72. 72.
    Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974. doi: 10.1523/JNEUROSCI.4363-08.2009 CrossRefPubMedGoogle Scholar
  73. 73.
    Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 69:236–244CrossRefGoogle Scholar
  74. 74.
    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2016) gplots: various R programming tools for plotting data. R package version 3.0.1Google Scholar
  75. 75.
    Zeger M, Popken G, Zhang J, Xuan S, Lu QR, Schwab MH, Nave K-A, Rowitch D, D’Ercole AJ, Ye P (2007) Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 55:400–411. doi: 10.1002/glia.20469 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nora Hagemeyer
    • 1
    Email author
  • Klara-Maria Hanft
    • 1
  • Maria-Anna Akriditou
    • 1
  • Nicole Unger
    • 2
    • 3
  • Eun S. Park
    • 4
  • E. Richard Stanley
    • 4
  • Ori Staszewski
    • 1
  • Leda Dimou
    • 2
    • 3
  • Marco Prinz
    • 1
    • 5
    Email author
  1. 1.Institute of Neuropathology, Medical FacultyUniversity of FreiburgFreiburgGermany
  2. 2.Molecular and Translational Neuroscience, Department of Neurology, Medical FacultyUlm UniversityUlmGermany
  3. 3.Physiological Genomics, Biomedical CenterLudwig-Maximilians UniversityMunichGermany
  4. 4.Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxUSA
  5. 5.BIOSS Centre for Biological Signalling Studies, University of FreiburgFreiburgGermany

Personalised recommendations