Acta Neuropathologica

, Volume 134, Issue 5, pp 789–808 | Cite as

α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading

  • Frida Loria
  • Jessica Y. Vargas
  • Luc Bousset
  • Sylvie Syan
  • Audrey Salles
  • Ronald Melki
  • Chiara ZurzoloEmail author
Original Paper


Recent evidence suggests that disease progression in Parkinson’s disease (PD) could occur by the spreading of α-synuclein (α-syn) aggregates between neurons. Here we studied the role of astrocytes in the intercellular transfer and fate of α-syn fibrils, using in vitro and ex vivo models. α-Syn fibrils can be transferred to neighboring cells; however, the transfer efficiency changes depending on the cell types. We found that α-syn is efficiently transferred from astrocytes to astrocytes and from neurons to astrocytes, but less efficiently from astrocytes to neurons. Interestingly, α-syn puncta are mainly found inside the lysosomal compartments of the recipient cells. However, differently from neurons, astrocytes are able to efficiently degrade fibrillar α-syn, suggesting an active role for these cells in clearing α-syn deposits. Astrocytes co-cultured with organotypic brain slices are able to take up α-syn fibrils from the slices. Altogether our data support a role for astrocytes in trapping and clearing α-syn pathological deposits in PD.


α-Synuclein Intercellular spreading Primary cultures Organotypic cultures Parkinson’s disease 



The authors thank all lab members for discussion and Seng Zhu for assistance in image analysis. We also thank Tracy Bellande for expert technical assistance. We gratefully acknowledge the Imagopole–Citech of Institut Pasteur (Paris), as well as the France–BioImaging infrastructure network supported by the Agence Nationale de la Recherche (ANR-10–INSB–04; Investments for the Future), the Région Ile-de-France (program Domaine d’Intérêt Majeur-Malinf) for the use of the Zeiss LSM 780 Elyra PS1 microscope, and IMAGIF facility for access to Electron Microscopes. We are also grateful for the financial support of Institut Pasteur (Paris). This work was also supported by the Agence Nationale de la Recherche (ANR 16 CE 16 0019 01 NEUROTUNN) and the EC Joint Programme on Neurodegenerative Diseases (JPND-NeuTARGETs-ANR-14-JPCD-0002-02) to CZ and RM; by Equipe FRM (Fondation pour la Recherche Médicale) 2014 (DEQ 20140329557) and by a France Parkinson Grant to CZ; and by the Centre National de la Recherche Scientifique, France Parkinson (Contract 113344), Equipe FRM (Fondation pour la Recherche Médicale) 2016 (DEQ 20160334896), The Fondation de France (Contract 2015-00060936), the Fondation Simone et Cino Del Duca of the Institut de France, and a “Coup d’Elan à la Recherche Française” award from Fondation Bettencourt-Schueller to RM. FL is recipient of a Marie Skłodowska-Curie fellowship.

Supplementary material

401_2017_1746_MOESM1_ESM.pdf (72 kb)
Supplementary material 1 (PDF 71 kb)
401_2017_1746_MOESM2_ESM.pdf (1.4 mb)
Supplementary material 2 (PDF 1477 kb)
401_2017_1746_MOESM3_ESM.pdf (240 kb)
Supplementary material 3 (PDF 240 kb)
401_2017_1746_MOESM4_ESM.pdf (2.6 mb)
Supplementary material 4 (PDF 2708 kb)
401_2017_1746_MOESM5_ESM.pdf (511 kb)
Supplementary material 5 (PDF 511 kb)
401_2017_1746_MOESM6_ESM.pdf (818 kb)
Supplementary material 6 (PDF 817 kb)
401_2017_1746_MOESM7_ESM.pdf (1.6 mb)
Supplementary material 7 (PDF 1626 kb)
401_2017_1746_MOESM8_ESM.pdf (1.1 mb)
Supplementary material 8 (PDF 1154 kb)


  1. 1.
    Abounit S, Bousset L, Loria F et al (2016) Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes. EMBO J 35:2120–2138. doi: 10.15252/embj.201593411 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Abounit S, Zurzolo C (2012) Wiring through tunneling nanotubes–from electrical signals to organelle transfer. J Cell Sci 125:1089–1098. doi: 10.1242/jcs.083279 CrossRefPubMedGoogle Scholar
  3. 3.
    Alvarez-Erviti L, Couch Y, Richardson J, Cooper JM, Wood MJ (2011) Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neurosci Res 69:337–342. doi: 10.1016/j.neures.2010.12.020 CrossRefPubMedGoogle Scholar
  4. 4.
    Anderson MA, Burda JE, Ren Y et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200. doi: 10.1038/nature17623 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Apetri MM, Harkes R, Subramaniam V, Canters GW, Schmidt T, Aartsma TJ (2016) Direct observation of alpha-synuclein amyloid aggregates in endocytic vesicles of neuroblastoma cells. PLoS One 11:e0153020. doi: 10.1371/journal.pone.0153020 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ayers JI, Brooks MM, Rutherford NJ et al (2017) Robust central nervous system pathology in transgenic mice following peripheral injection of alpha-synuclein fibrils. J Virol. doi: 10.1128/JVI.02095-16 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bae EJ, Yang NY, Song M et al (2014) Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein. Nat Commun 5:4755. doi: 10.1038/ncomms5755 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915. doi: 10.1038/srep15915 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. doi: 10.1016/j.cmet.2011.08.016 CrossRefPubMedGoogle Scholar
  10. 10.
    Bousset L, Pieri L, Ruiz-Arlandis G et al (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575. doi: 10.1038/ncomms3575 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMedGoogle Scholar
  12. 12.
    Braak H, Sastre M, Del Tredici K (2007) Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114:231–241. doi: 10.1007/s00401-007-0244-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Brahic M, Bousset L, Bieri G, Melki R, Gitler AD (2016) Axonal transport and secretion of fibrillar forms of alpha-synuclein, Abeta42 peptide and HTTExon 1. Acta Neuropathol 131:539–548. doi: 10.1007/s00401-016-1538-0 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Braidy N, Gai WP, Xu YH et al (2013) Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Transl Neurodegener 2:20. doi: 10.1186/2047-9158-2-20 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bruck D, Wenning GK, Stefanova N, Fellner L (2016) Glia and alpha-synuclein in neurodegeneration: a complex interaction. Neurobiol Dis 85:262–274. doi: 10.1016/j.nbd.2015.03.003 CrossRefPubMedGoogle Scholar
  16. 16.
    Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307. doi: 10.1038/nrm2873 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cavaliere F, Cerf L, Dehay B et al (2017) In vitro alpha-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiol Dis 103:101–112. doi: 10.1016/j.nbd.2017.04.011 CrossRefPubMedGoogle Scholar
  18. 18.
    Costanzo M, Zurzolo C (2013) The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 452:1–17. doi: 10.1042/BJ20121898 CrossRefPubMedGoogle Scholar
  19. 19.
    Desplats P, Lee HJ, Bae EJ et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015. doi: 10.1073/pnas.0903691106 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Di Malta C, Fryer JD, Settembre C, Ballabio A (2012) Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci USA 109:E2334–E2342. doi: 10.1073/pnas.1209577109 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Domert J, Sackmann C, Severinsson E et al (2016) Aggregated alpha-synuclein transfer efficiently between cultured human neuron-like cells and localize to lysosomes. PLoS One 11:e0168700. doi: 10.1371/journal.pone.0168700 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Freeman D, Cedillos R, Choyke S et al (2013) Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS One 8:e62143. doi: 10.1371/journal.pone.0062143 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Freundt EC, Maynard N, Clancy EK et al (2012) Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol 72:517–524. doi: 10.1002/ana.23747 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ghee M, Melki R, Michot N, Mallet J (2005) PA700, the regulatory complex of the 26S proteasome, interferes with alpha-synuclein assembly. FEBS J 272:4023–4033. doi: 10.1111/j.1742-4658.2005.04776.x CrossRefPubMedGoogle Scholar
  25. 25.
    Han X, Chen M, Wang F et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353. doi: 10.1016/j.stem.2012.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hansen C, Angot E, Bergstrom AL et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Investig 121:715–725. doi: 10.1172/JCI43366 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ji K, Akgul G, Wollmuth LP, Tsirka SE (2013) Microglia actively regulate the number of functional synapses. PLoS One 8:e56293. doi: 10.1371/journal.pone.0056293 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kasai T, Tokuda T, Yamaguchi N et al (2008) Cleavage of normal and pathological forms of alpha-synuclein by neurosin in vitro. Neurosci Lett 436:52–56. doi: 10.1016/j.neulet.2008.02.057 CrossRefPubMedGoogle Scholar
  29. 29.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. doi: 10.1038/nm1747 CrossRefPubMedGoogle Scholar
  30. 30.
    Lee HJ, Suk JE, Bae EJ, Lee SJ (2008) Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun 372:423–428. doi: 10.1016/j.bbrc.2008.05.045 CrossRefPubMedGoogle Scholar
  31. 31.
    Lee HJ, Suk JE, Patrick C et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272. doi: 10.1074/jbc.M109.081125 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi: 10.1038/nm1746 CrossRefPubMedGoogle Scholar
  33. 33.
    Liddelow S, Barres B (2015) SnapShot: astrocytes in health and disease. Cell 162(1170–1170):e1171. doi: 10.1016/j.cell.2015.08.029 Google Scholar
  34. 34.
    Loria F, Diaz-Nido J (2015) Frataxin knockdown in human astrocytes triggers cell death and the release of factors that cause neuronal toxicity. Neurobiol Dis 76:1–12. doi: 10.1016/j.nbd.2014.12.017 CrossRefPubMedGoogle Scholar
  35. 35.
    Luk KC, Covell DJ, Kehm VM et al (2016) Molecular and biological compatibility with host alpha-synuclein influences fibril pathogenicity. Cell Rep 16:3373–3387. doi: 10.1016/j.celrep.2016.08.053 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA (2010) Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 285:13621–13629. doi: 10.1074/jbc.M109.074617 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815PubMedGoogle Scholar
  38. 38.
    Masliah E, Rockenstein E, Veinbergs I et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269CrossRefPubMedGoogle Scholar
  39. 39.
    Moreno-Gonzalez I, Soto C (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22:482–487. doi: 10.1016/j.semcdb.2011.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605. doi: 10.1002/dvg.20335 CrossRefPubMedGoogle Scholar
  41. 41.
    Pampalakis G, Sykioti VS, Ximerakis M et al (2017) KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species. Oncotarget 8:14502–14515. doi: 10.18632/oncotarget.13264 PubMedGoogle Scholar
  42. 42.
    Peelaerts W, Bousset L, Van der Perren A et al (2015) alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344. doi: 10.1038/nature14547 CrossRefPubMedGoogle Scholar
  43. 43.
    Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434. doi: 10.1002/glia.20207 CrossRefPubMedGoogle Scholar
  44. 44.
    Pieri L, Chafey P, Le Gall M, Clary G, Melki R, Redeker V (2016) Cellular response of human neuroblastoma cells to alpha-synuclein fibrils, the main constituent of Lewy bodies. Biochem Biophys Acta 1860:8–19. doi: 10.1016/j.bbagen.2015.10.007 CrossRefPubMedGoogle Scholar
  45. 45.
    Recasens A, Dehay B (2014) Alpha-synuclein spreading in Parkinson’s disease. Front Neuroanat 8:159. doi: 10.3389/fnana.2014.00159 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rey NL, Wesson DW, Brundin P (2016) The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis. doi: 10.1016/j.nbd.2016.12.013 PubMedGoogle Scholar
  47. 47.
    Reyes JF, Rey NL, Bousset L, Melki R, Brundin P, Angot E (2014) Alpha-synuclein transfers from neurons to oligodendrocytes. Glia 62:387–398. doi: 10.1002/glia.22611 CrossRefPubMedGoogle Scholar
  48. 48.
    Ridet JL, Sarkis C, Serguera C, Zennou V, Charneau P, Mallet J (2003) Transplantation of human adult astrocytes: efficiency and safety requirements for an autologous gene therapy. J Neurosci Res 72:704–708. doi: 10.1002/jnr.10617 CrossRefPubMedGoogle Scholar
  49. 49.
    Sacino AN, Brooks MM, Chakrabarty P et al (2017) Proteolysis of alpha-synuclein fibrils in the lysosomal pathway limits induction of inclusion pathology. J Neurochem 140:662–678. doi: 10.1111/jnc.13743 CrossRefPubMedGoogle Scholar
  50. 50.
    Sacino AN, Thomas MA, Ceballos-Diaz C et al (2013) Conformational templating of alpha-synuclein aggregates in neuronal-glial cultures. Mol Neurodegener 8:17. doi: 10.1186/1750-1326-8-17 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Singleton AB, Farrer M, Johnson J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841. doi: 10.1126/science.1090278 CrossRefPubMedGoogle Scholar
  52. 52.
    Taguchi K, Watanabe Y, Tsujimura A et al (2014) Differential expression of alpha-synuclein in hippocampal neurons. PLoS One 9:e89327. doi: 10.1371/journal.pone.0089327 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tatebe H, Watanabe Y, Kasai T et al (2010) Extracellular neurosin degrades alpha-synuclein in cultured cells. Neurosci Res 67:341–346. doi: 10.1016/j.neures.2010.04.008 CrossRefPubMedGoogle Scholar
  54. 54.
    Van der Perren A, Toelen J, Casteels C et al (2015) Longitudinal follow-up and characterization of a robust rat model for Parkinson’s disease based on overexpression of alpha-synuclein with adeno-associated viral vectors. Neurobiol Aging 36:1543–1558. doi: 10.1016/j.neurobiolaging.2014.11.015 CrossRefPubMedGoogle Scholar
  55. 55.
    Volpicelli-Daley LA, Gamble KL, Schultheiss CE, Riddle DM, West AB, Lee VM (2014) Formation of alpha-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes. Mol Biol Cell 25:4010–4023. doi: 10.1091/mbc.E14-02-0741 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wong YC, Krainc D (2016) Lysosomal trafficking defects link Parkinson’s disease with Gaucher’s disease. Mov Disord 31:1610–1618. doi: 10.1002/mds.26802 CrossRefPubMedGoogle Scholar
  57. 57.
    Zamanian JL, Xu L, Foo LC et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410. doi: 10.1523/JNEUROSCI.6221-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Frida Loria
    • 1
  • Jessica Y. Vargas
    • 1
  • Luc Bousset
    • 2
  • Sylvie Syan
    • 1
  • Audrey Salles
    • 3
  • Ronald Melki
    • 2
  • Chiara Zurzolo
    • 1
    Email author
  1. 1.Unité de Trafic Membranaire et PathogénèseInstitut PasteurParisFrance
  2. 2.Paris-Saclay Institute of NeuroscienceCNRSGif-sur-YvetteFrance
  3. 3.Imagopole-CitechInstitut PasteurParisFrance

Personalised recommendations