Remodeling of heterochromatin structure slows neuropathological progression and prolongs survival in an animal model of Huntington’s disease

  • Junghee Lee
  • Yu Jin Hwang
  • Yunha Kim
  • Min Young Lee
  • Seung Jae Hyeon
  • Soojin Lee
  • Dong Hyun Kim
  • Sung Jae Jang
  • Hyoenjoo Im
  • Sun-Joon Min
  • Hyunah Choo
  • Ae Nim Pae
  • Dong Jin Kim
  • Kyung Sang Cho
  • Neil W. Kowall
  • Hoon Ryu
Original Paper

Abstract

Huntington’s disease (HD) is an autosomal-dominant inherited neurological disorder caused by expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. Altered histone modifications and epigenetic mechanisms are closely associated with HD suggesting that transcriptional repression may play a pathogenic role. Epigenetic compounds have significant therapeutic effects in cellular and animal models of HD, but they have not been successful in clinical trials. Herein, we report that dSETDB1/ESET, a histone methyltransferase (HMT), is a mediator of mutant HTT-induced degeneration in a fly HD model. We found that nogalamycin, an anthracycline antibiotic and a chromatin remodeling drug, reduces trimethylated histone H3K9 (H3K9me3) levels and pericentromeric heterochromatin condensation by reducing the expression of Setdb1/Eset. H3K9me3-specific ChIP-on-ChIP analysis identified that the H3K9me3-enriched epigenome signatures of multiple neuronal pathways including Egr1, Fos, Ezh1, and Arc are deregulated in HD transgenic (R6/2) mice. Nogalamycin modulated the expression of the H3K9me3-landscaped epigenome in medium spiny neurons and reduced mutant HTT nuclear inclusion formation. Moreover, nogalamycin slowed neuropathological progression, preserved motor function, and extended the life span of R6/2 mice. Together, our results indicate that modulation of SETDB1/ESET and H3K9me3-dependent heterochromatin plasticity is responsible for the neuroprotective effects of nogalamycin in HD and that small compounds targeting dysfunctional histone modification and epigenetic modification by SETDB1/ESET may be a rational therapeutic strategy in HD.

Keywords

Huntington’s disease Heterochromatin Histone methyltransferase H3K9me3 Epigenome 

Supplementary material

401_2017_1732_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 56 kb)
401_2017_1732_MOESM2_ESM.pdf (6.3 mb)
Supplementary material 2 (PDF 6501 kb)

References

  1. 1.
    Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31:477–510CrossRefPubMedGoogle Scholar
  2. 2.
    Bhuyan BK, Reusser F (1970) Comparative biological activity of nogalamycin and its analogs. Cancer Res 30:984–989PubMedGoogle Scholar
  3. 3.
    Cha JH (2007) Transcriptional signatures in Huntington’s disease. Prog Neurobiol 83:228–248CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chatterjee S, Zaman K, Ryu H, Conforto A, Ratan RR (2001) Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons. Ann Neurol 49:345–354CrossRefPubMedGoogle Scholar
  5. 5.
    Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D (2002) Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 296:2238–2243CrossRefPubMedGoogle Scholar
  6. 6.
    Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23:9418–9427PubMedGoogle Scholar
  7. 7.
    Ferrante RJ, Ryu H, Kubilus JK, D’Mello S, Sugars KL, Lee JH, Lu P, Smith K, Browne SE, Beal MF et al (2004) Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J Neurosci 24:10335–10342CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ganguli R, Chowdhury K, Chakraborty B, Neogy RK (1983) Interaction of nogalamycin with chromatin. Chem Biol Interact 46:347–352CrossRefPubMedGoogle Scholar
  9. 9.
    Gardian G, Browne SE, Choi DK, Klivenyi P, Ryu H, Gregorio J, Kubilus JK, Brett Langley B, Ratan RR, Ferrante RJ, Beal MF (2005) Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem 280:556–563CrossRefPubMedGoogle Scholar
  10. 10.
    Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic “language” of covalent histone modifications to cancer. Br J Cancer 90:761–769CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Progr Neurobiol 50:83–107CrossRefGoogle Scholar
  12. 12.
    Hockly E, Richon VM, Woodman B et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA 100:2041–2046CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  14. 14.
    Hwang YJ, Han DH, Kim KY, Min S-J, Kowall NW, Yang L, Lee J, Kim YS, Ryu H (2014) ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription. Nucleic Acids Res 42:1628–1643CrossRefPubMedGoogle Scholar
  15. 15.
    Jia H, Kast RJ, Steffan JS, Thomas EA (2012) Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington’s disease mice: implications for the ubiquitin-proteasomal and autophagy systems. Hum Mol Genet 21:5280–5293CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jia H, Morris CD, Williams RM, Loring JF, Thomas EA (2015) HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci USA 112:E56–E64CrossRefPubMedGoogle Scholar
  17. 17.
    Jia H, Pallos J, Jacques V et al (2012) Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis 46:351–361CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic Acids Res 37:D623–D628CrossRefPubMedGoogle Scholar
  19. 19.
    Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868CrossRefPubMedGoogle Scholar
  20. 20.
    Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287:1837–1840CrossRefPubMedGoogle Scholar
  21. 21.
    Lee J, Hagerty S, Cormier KA, Kung AL, Ferrante RJ, Ryu H (2008) Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation. Hum Mol Genet 17:1774–1782CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee J, Hong YK, Jeon GS, Hwang YJ, Kim KY, Seon KH, Jung M-K, Picketts DJ, Kowall NW, Cho KS, Ryu H (2012) ATRX induction by mutant huntingtin via Cdx-2 modulates heterochromatin condensation and pathology in Huntington’s disease. Cell Death Differ 19:1109–1116CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee J, Hwang YJ, Kim KY, Kowall NW, Ryu H (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10:664–676CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lee J, Hwang YJ, Shin J-Y, Lee W-C, Wie J, Kim KY, Lee MY, Hwang D, Ratan RR, Kowall NW, So I, Kim J-I, Ryu H (2013) Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca2+ signaling in Huntington’s disease. Acta Neuropathol 125:727–739CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lee J, Kim CH, Simon D, Aminova L, Andreyev A, Kushnareva Y, Murphy A, Lonze BE, Kim KS, Ginty DD, Ferrante RJ, Ryu H, Ratan RR (2005) Mitochondrial CREB regulates mitochondrial gene expression and neuronal survival. J Biol Chem 280:40398–40401CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee J, Kosaras B, Del Signore SJ, Cormier K, McKee A, Ratan RR, Kowall NW, Ryu H (2011) Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol 121:487–498CrossRefPubMedGoogle Scholar
  27. 27.
    Li LH, Krueger WC (1991) The biochemical pharmacology of nogalamycin and its derivatives. Pharmacol Ther 51:239–255CrossRefPubMedGoogle Scholar
  28. 28.
    Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Menon AS, Frey AS, Spektor BS, Penney EB, Schilling G, Ross CA, Borchelt DR, Tapscott SJ, Young AB, Cha JH, Olson JM (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet 9:1259–1271CrossRefPubMedGoogle Scholar
  29. 29.
    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506CrossRefPubMedGoogle Scholar
  30. 30.
    McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci USA 98:15179–15184CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Muggia FM, Green MD (1991) New anthracycline antitumor antibiotics. Crit Rev Oncol Hematol 11:43–64CrossRefPubMedGoogle Scholar
  32. 32.
    Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM, Ross CA (2001) Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291:2423–2428CrossRefPubMedGoogle Scholar
  33. 33.
    Panda CK, Choudhury K, Neogy RK (1986) Preferential binding of adriamycin and nogalamycin to DNase-I hypersensitive sites of Sarcoma-180 chromatin. Chem Biol Interact 57:65–72CrossRefPubMedGoogle Scholar
  34. 34.
    Portugal J, Waring MJ (1986) Antibiotics which can alter the rotational orientation of nucleosome core DNA. Nucleic Acids Res 14:8735–8754CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Richards EJ, Elgin SC (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500CrossRefPubMedGoogle Scholar
  36. 36.
    Richardson CL, Grant AD, Schpok SL, Krueger WC, Li LH (1981) Template specificity of DNA binding by nogalamycin and its analogs utilizing competitive fluorescence polarization. Cancer Res 41:2235–2240PubMedGoogle Scholar
  37. 37.
    Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA, Smith KM, Ferrante RJ (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci USA 103:19176–19181CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ryu H, Lee J, Impey S, Ratan RR, Ferrante RJ (2005) Antioxidants modulate mitochondrial protein kinase A and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc Natl Acad Sci USA 102:13915–13920CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ryu H, Lee JH, Olofsson BA, Mwidau A, Deodoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ, Ratan RR (2003) Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci USA 100:4281–4286CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sadri-Vakili G, Bouzou B, Benn CL, Kim MO, Chawla P, Overland RP, Glajch KE, Xia E, Qiu Z, Hersch SM, Clark TW, Yohrling GJ, Cha JH (2007) Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum Mol Genet 11:1293–1306CrossRefGoogle Scholar
  41. 41.
    Sadri-Vakili G, Cha JH (2006) Mechanisms of disease: histone modifications in Huntington’s disease. Nat Clin Pract Neurol 2:330–338CrossRefPubMedGoogle Scholar
  42. 42.
    Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16:919–932CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Searle MS, Hall JG, Denny WA, Wakelin LP (1998) NMR studies of the interaction of the antibiotic nogalamycin with the hexadeoxyribonucleotide duplex d(5′-GCATGC)2. Biochemistry 27:4340–4349CrossRefGoogle Scholar
  44. 44.
    Smith CK, Brannigan JA, Moore MH (1996) Factors affecting DNA sequence selectivity of nogalamycin intercalation: the crystal structure of d(TGTACA)2-nogalamycin2. J Mol Biol 263:237–258CrossRefPubMedGoogle Scholar
  45. 45.
    Spektor BS, Miller DW, Hollingsworth ZR, Kaneko YA, Solano SM, Johnson JM, Penney JB Jr, Young AB, Luthi-Carter R (2002) Differential D1 and D2 receptor-mediated effects on immediate early gene induction in a transgenic mouse model of Huntington’s disease. Brain Res Mol Brain Res 102:118–128CrossRefPubMedGoogle Scholar
  46. 46.
    Stack EC, Del Signore SJ, Matson S, Goodrich SC, Markey AL, Cormier K, Hagerty SW, Soh BY, Smith K, Ryu H, Ferrante RJ (2007) Modulation of nucleosome dynamics in Huntington’s disease. Hum Mol Genet 16:1164–1175CrossRefPubMedGoogle Scholar
  47. 47.
    Stack EC, Kubilus JK, Smith K, Cormier K, Del Signore SJ, Guelin E, Ryu H, Hersch SM, Ferrante RJ (2005) Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice. J Comp Neurol 490:354–370CrossRefPubMedGoogle Scholar
  48. 48.
    Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743CrossRefPubMedGoogle Scholar
  49. 49.
    Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 97:6763–6768CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238CrossRefPubMedGoogle Scholar
  51. 51.
    Taylor JP, Taye AA, Campbell C, Kazemi-Esfarjani P, Fischbeck KH, Min KT (2003) Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev 17:1463–1468CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, MacDonald ME (2000) Dominant phenotypes produced by the HD mutation in STHdh (Q111) striatal cell. Hum Mol Genet 9:2799–2809CrossRefPubMedGoogle Scholar
  53. 53.
    Tzeng TY, Lee CH, Chan LW, Shen CK (2007) Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1. Proc Natl Acad Sci USA 105:12691–12696CrossRefGoogle Scholar
  54. 54.
    Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19:381–391CrossRefPubMedGoogle Scholar
  55. 55.
    Vakoc CR, Sachdeva MM, Wang H, Blobel GA (2006) Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26:9185–9195CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12:475–487CrossRefPubMedGoogle Scholar
  57. 57.
    Wiencke JK, Zheng S, Morrison Z, Yeh R-F (2008) Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene 27:2412–2421CrossRefPubMedGoogle Scholar
  58. 58.
    Wu R, Terry AV, Singh PB, Gilbert DM (2005) Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 16:2872–2881CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y (2002) Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21:148–152CrossRefPubMedGoogle Scholar
  60. 60.
    Yoon J, Lee K-S, Park JS, Yu K, Paik S-G et al (2008) dSETDB1 and SU(VAR)3–9 sequentially function during germline-stem cell differentiation in Drosophila melanogaster. PLoS ONE 3(5):e2234CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981CrossRefPubMedGoogle Scholar
  62. 62.
    Zucker B, Luthi-Carter R, Kama JA, Dunah AW, Stern EA, Fox JH, Standaert DG, Young AB, Augood SJ (2005) Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington’s disease: neuronal selectivity and potential neuroprotective role of HAP1. Hum Mol Genet 14:179–189CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Junghee Lee
    • 1
    • 2
  • Yu Jin Hwang
    • 3
  • Yunha Kim
    • 3
  • Min Young Lee
    • 4
  • Seung Jae Hyeon
    • 3
  • Soojin Lee
    • 5
  • Dong Hyun Kim
    • 3
  • Sung Jae Jang
    • 3
  • Hyoenjoo Im
    • 3
  • Sun-Joon Min
    • 5
  • Hyunah Choo
    • 3
  • Ae Nim Pae
    • 7
  • Dong Jin Kim
    • 3
  • Kyung Sang Cho
    • 6
  • Neil W. Kowall
    • 1
    • 2
  • Hoon Ryu
    • 1
    • 2
    • 3
  1. 1.VA Boston Healthcare SystemBostonUSA
  2. 2.Boston University Alzheimer’s Disease Center and Department of NeurologyBoston University School of MedicineBostonUSA
  3. 3.Center for Neuromedicine, Brain Science InstituteKorea Institute of Science and TechnologySeoulSouth Korea
  4. 4.Institute for Systems BiologySeattleUSA
  5. 5.Department of Chemical and Molecular Engineering/Applied ChemistryHanyang UniversityAnsanSouth Korea
  6. 6.Department of Biological SciencesKonkuk UniversitySeoulSouth Korea
  7. 7.Convergence Research Center for Diagnosis, Treatment, and Care System of DementiaKorea Institute of Science and TechnologySeoulSouth Korea

Personalised recommendations