Acta Neuropathologica

, Volume 134, Issue 2, pp 207–220 | Cite as

Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model

  • Wang-Sheng Jin
  • Lin-Lin Shen
  • Xian-Le Bu
  • Wei-Wei Zhang
  • Si-Han Chen
  • Zhi-Lin Huang
  • Jia-Xiang Xiong
  • Chang-Yue Gao
  • Zhifang Dong
  • Ya-Ni He
  • Zhi-An Hu
  • Hua-Dong Zhou
  • Weihong Song
  • Xin-Fu Zhou
  • Yi-Zheng Wang
  • Yan-Jiang WangEmail author
Original Paper


Clearance of amyloid-beta (Aβ) from the brain is an important therapeutic strategy for Alzheimer’s disease (AD). Current studies mainly focus on the central approach of Aβ clearance by introducing therapeutic agents into the brain. In a previous study, we found that peripheral tissues and organs play important roles in clearing brain-derived Aβ, suggesting that the peripheral approach of removing Aβ from the blood may also be effective for AD therapy. Here, we investigated whether peritoneal dialysis, a clinically available therapeutic method for chronic kidney disease (CKD), reduces brain Aβ burden and attenuates AD-type pathologies and cognitive impairments. Thirty patients with newly diagnosed CKD were enrolled. The plasma Aβ concentrations of the patients were measured before and after peritoneal dialysis. APP/PS1 mice were subjected to peritoneal dialysis once a day for 1 month from 6 months of age (prevention study) or 9 months of age (treatment study). The Aβ in the interstitial fluid (ISF) was collected using microdialysis. Behavioural performance, long-term potentiation (LTP), Aβ burden and other AD-type pathologies were measured after 1 month of peritoneal dialysis. Peritoneal dialysis significantly reduced plasma Aβ levels in both CKD patients and APP/PS1 mice. Aβ levels in the brain ISF of APP/PS1 mice immediately decreased after reduction of Aβ in the blood during peritoneal dialysis. In both prevention and treatment studies, peritoneal dialysis substantially reduced Aβ deposition, attenuated other AD-type pathologies, including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, and synaptic dysfunction, and rescued the behavioural deficits of APPswe/PS1 mice. Importantly, the Aβ phagocytosis function of microglia was enhanced in APP/PS1 mice after peritoneal dialysis. Our study suggests that peritoneal dialysis is a promising therapeutic method for AD, and Aβ clearance using a peripheral approach could be a desirable therapeutic strategy for AD.


Alzheimer’s disease Amyloid-beta Peritoneal dialysis Neurodegeneration Peripheral clearance 



This study was supported by National Natural Science Foundation of China (Grant Number 81471296 and 81625007). W.S. is the holder of the Tier 1 Canada Research Chair in Alzheimer’s Disease.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

401_2017_1721_MOESM1_ESM.docx (5.4 mb)
Supplementary material 1 (DOCX 5522 kb)


  1. 1.
    Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W et al (2015) Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron 88:289–297. doi: 10.1016/j.neuron.2015.09.036 CrossRefPubMedGoogle Scholar
  2. 2.
    Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N et al (2008) Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321:1221–1224. doi: 10.1126/science.1161591 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bu XL, Cao GQ, Shen LL, Xiang Y, Jiao SS, Liu YH et al (2015) Serum amyloid-beta levels are increased in patients with chronic obstructive pulmonary disease. Neurotox Res 28:346–351. doi: 10.1007/s12640-015-9552-x CrossRefPubMedGoogle Scholar
  4. 4.
    Bu XL, Yao XQ, Jiao SS, Zeng F, Liu YH, Xiang Y et al (2015) A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol 22:1519–1525. doi: 10.1111/ene.12477 CrossRefPubMedGoogle Scholar
  5. 5.
    Busche MA, Grienberger C, Keskin AD, Song B, Neumann U, Staufenbiel M et al (2015) Decreased amyloid-beta and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat Neurosci 18:1725–1727. doi: 10.1038/nn.4163 CrossRefPubMedGoogle Scholar
  6. 6.
    Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE (2011) Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal 15:1167–1178. doi: 10.1089/ars.2011.3895 CrossRefPubMedGoogle Scholar
  7. 7.
    Chai GS, Duan DX, Ma RH, Shen JY, Li HL, Ma ZW et al (2014) Humanin attenuates Alzheimer-like cognitive deficits and pathological changes induced by amyloid beta-peptide in rats. Neurosci Bull 30:923–935. doi: 10.1007/s12264-014-1479-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Chakraborty A, de Wit NM, van der Flier WM, de Vries HE (2017) The blood brain barrier in Alzheimer’s disease. Vascul Pharmacol 89:12–18. doi: 10.1016/j.vph.2016.11.008 CrossRefPubMedGoogle Scholar
  9. 9.
    Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW et al (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci 23:8844–8853PubMedGoogle Scholar
  10. 10.
    Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513. doi: 10.1038/jcbfm.2013.135 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135CrossRefPubMedGoogle Scholar
  12. 12.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890CrossRefPubMedGoogle Scholar
  13. 13.
    Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K (2001) Molecular and cellular permeability control at the blood-brain barrier. Brain Res Brain Res Rev 36:258–264CrossRefPubMedGoogle Scholar
  14. 14.
    Guan H, Liu Y, Daily A, Police S, Kim MH, Oddo S et al (2009) Peripherally expressed neprilysin reduces brain amyloid burden: a novel approach for treating Alzheimer’s disease. J Neurosci Res 87:1462–1473. doi: 10.1002/jnr.21944 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Henderson SJ, Andersson C, Narwal R, Janson J, Goldschmidt TJ, Appelkvist P et al (2013) Sustained peripheral depletion of amyloid-beta with a novel form of neprilysin does not affect central levels of amyloid-beta. Brain 137:553–64. doi: 10.1093/brain/awt308 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ et al (2016) Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540:230–235. doi: 10.1038/nature20587 CrossRefPubMedGoogle Scholar
  17. 17.
    Iijima-Ando K, Hearn SA, Granger L, Shenton C, Gatt A, Chiang HC et al (2008) Overexpression of neprilysin reduces alzheimer amyloid-beta42 (Abeta42)-induced neuron loss and intraneuronal Abeta42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem 283:19066–19076. doi: 10.1074/jbc.M710509200 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jacobson I, Sandberg M, Hamberger A (1985) Mass transfer in brain dialysis devices–a new method for the estimation of extracellular amino acids concentration. J Neurosci Methods 15:263–268CrossRefPubMedGoogle Scholar
  19. 19.
    Jiao SS, Bu XL, Liu YH, Zhu C, Wang QH, Shen LL et al (2016) Sex Dimorphism profile of Alzheimer’s disease-type pathologies in an APP/PS1 mouse model. Neurotox Res 29:256–266. doi: 10.1007/s12640-015-9589-x CrossRefPubMedGoogle Scholar
  20. 20.
    Jiao SS, Yao XQ, Liu YH, Wang QH, Zeng F, Lu JJ et al (2015) Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits. Proc Natl Acad Sci USA 112:5225–5230. doi: 10.1073/pnas.1422998112 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Joachim CL, Mori H, Selkoe DJ (1989) Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature 341:226–230. doi: 10.1038/341226a0 CrossRefPubMedGoogle Scholar
  22. 22.
    Kitaguchi N, Hasegawa M, Ito S, Kawaguchi K, Hiki Y, Nakai S et al (2015) A prospective study on blood Abeta levels and the cognitive function of patients with hemodialysis: a potential therapeutic strategy for Alzheimer’s disease. J Neural Transm (Vienna, Austria: 1996) 122:1593–1607. doi: 10.1007/s00702-015-1431-3 CrossRefGoogle Scholar
  23. 23.
    Liu YH, Giunta B, Zhou HD, Tan J, Wang YJ (2012) Immunotherapy for Alzheimer disease: the challenge of adverse effects. Nat Rev Neurol 8:465–469. doi: 10.1038/nrneurol.2012.118 PubMedGoogle Scholar
  24. 24.
    Liu YH, Wang YR, Xiang Y, Zhou HD, Giunta B, Manucat-Tan NB et al (2015) Clearance of amyloid-beta in Alzheimer’s disease: shifting the action site from center to periphery. Mol Neurobiol 51:1–7. doi: 10.1007/s12035-014-8694-9 CrossRefPubMedGoogle Scholar
  25. 25.
    Liu YH, Xiang Y, Wang YR, Jiao SS, Wang QH, Bu XL et al (2015) Association between serum amyloid-beta and renal functions: implications for roles of kidney in amyloid-beta clearance. Mol Neurobiol 52:115–119. doi: 10.1007/s12035-014-8854-y CrossRefPubMedGoogle Scholar
  26. 26.
    Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R et al (2015) Hyperglycemia modulates extracellular amyloid-beta concentrations and neuronal activity in vivo. J Clin Invest 125:2463–2467. doi: 10.1172/JCI79742 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716. doi: 10.1016/S1474-4422(10)70119-8 CrossRefPubMedGoogle Scholar
  28. 28.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. doi: 10.1126/science.1197623 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452. doi: 10.1038/nm840 CrossRefPubMedGoogle Scholar
  31. 31.
    Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684. doi: 10.1016/S1474-4422(16)00070-3 CrossRefPubMedGoogle Scholar
  32. 32.
    Pipili C, Polydorou A, Pantelias K, Korfiatis P, Nikolakopoulos F, Grapsa E (2013) Improvement of hepatic encephalopathy by application of peritoneal dialysis in a patient with non-end-stage renal disease. Perit Dial Int 33:213–216. doi: 10.3747/pdi.2011.00271 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE et al (2014) Amyloid-beta efflux from the central nervous system into the plasma. Ann Neurol 76:837–844. doi: 10.1002/ana.24270 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sakai K, Senda T, Hata R, Kuroda M, Hasegawa M, Kato M et al (2016) Patients that have undergone hemodialysis exhibit lower amyloid deposition in the brain: evidence supporting a therapeutic strategy for Alzheimer’s disease by removal of blood amyloid. J Alzheimers Dis 51:997–1002. doi: 10.3233/JAD-151139 CrossRefPubMedGoogle Scholar
  35. 35.
    Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M et al (2009) A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73:2061–2070. doi: 10.1212/WNL.0b013e3181c67808 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E et al (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 109:3510–3515. doi: 10.1073/pnas.1112209109 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608. doi: 10.15252/emmm.201606210 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Siska Mortier NHL, De Vriese An S (2005) Animal models in peritoneal dialysis research: a need for consensus. Perit Dial Int 25:16–24PubMedGoogle Scholar
  39. 39.
    Tholen S, Schmaderer C, Chmielewski S, Forstl H, Heemann U, Baumann M et al (2016) Reduction of amyloid-beta plasma levels by hemodialysis: an anti-amyloid treatment strategy? J Alzheimers disease 50:791–796. doi: 10.3233/jad-150662 CrossRefGoogle Scholar
  40. 40.
    Troncone L, Luciani M, Coggins M, Wilker EH, Ho CY, Codispoti KE et al (2016) Abeta amyloid pathology affects the hearts of patients with Alzheimer’s disease: mind the heart. J Am Coll Cardiol 68:2395–2407. doi: 10.1016/j.jacc.2016.08.073 CrossRefPubMedGoogle Scholar
  41. 41.
    Walker JR, Pacoma R, Watson J, Ou W, Alves J, Mason DE et al (2013) Enhanced proteolytic clearance of plasma Abeta by peripherally administered neprilysin does not result in reduced levels of brain Abeta in mice. J Neurosci 33:2457–2464. doi: 10.1523/JNEUROSCI.3407-12.2013 CrossRefPubMedGoogle Scholar
  42. 42.
    Wang YR, Wang QH, Zhang T, Liu YH, Yao XQ, Zeng F et al (2016) Associations between hepatic functions and plasma amyloid-beta levels-implications for the capacity of liver in peripheral amyloid-beta clearance. Mol Neurobiol 54:2338–2344. doi: 10.1007/s12035-016-9826-1 CrossRefPubMedGoogle Scholar
  43. 43.
    Wu X, Bai Y, Tan T, Li H, Xia S, Chang X et al (2014) Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats. Front Behav Neurosci 8:234. doi: 10.3389/fnbeh.2014.00234 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xiang Y, Bu XL, Liu YH, Zhu C, Shen LL, Jiao SS et al (2015) Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 130:487–499. doi: 10.1007/s00401-015-1477-1 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Xiong H, Callaghan D, Wodzinska J, Xu J, Premyslova M, Liu QY et al (2011) Biochemical and behavioral characterization of the double transgenic mouse model (APPswe/PS1dE9) of Alzheimer’s disease. Neurosci Bull 27:221–232. doi: 10.1007/s12264-011-1015-7 CrossRefPubMedGoogle Scholar
  46. 46.
    Yao XQ, Jiao SS, Saadipour K, Zeng F, Wang QH, Zhu C et al (2015) p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer’s disease. Mol Psychiatry 20:1301–1310. doi: 10.1038/mp.2015.49 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wang-Sheng Jin
    • 1
  • Lin-Lin Shen
    • 1
  • Xian-Le Bu
    • 1
  • Wei-Wei Zhang
    • 2
  • Si-Han Chen
    • 1
  • Zhi-Lin Huang
    • 3
  • Jia-Xiang Xiong
    • 4
  • Chang-Yue Gao
    • 1
  • Zhifang Dong
    • 3
  • Ya-Ni He
    • 2
  • Zhi-An Hu
    • 4
  • Hua-Dong Zhou
    • 1
  • Weihong Song
    • 5
  • Xin-Fu Zhou
    • 6
  • Yi-Zheng Wang
    • 7
  • Yan-Jiang Wang
    • 1
    Email author
  1. 1.Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
  2. 2.Department of Nephrology, Daping HospitalThird Military Medical UniversityChongqingChina
  3. 3.Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingChina
  4. 4.Department of PhysiologyThird Military Medical UniversityChongqingChina
  5. 5.Townsend Family Laboratories, Department of Psychiatry, Center for Brain HealthThe University of British ColumbiaVancouverCanada
  6. 6.School of Pharmacy and Medical Sciences and Sansom InstituteUniversity of South AustraliaAdelaideAustralia
  7. 7.Laboratory of Neural Signal Transduction, Institute of NeuroscienceChinese Academy of ScienceShanghaiChina

Personalised recommendations