Acta Neuropathologica

, Volume 133, Issue 6, pp 923–931 | Cite as

Cryptic exon incorporation occurs in Alzheimer’s brain lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43

  • Mingkuan Sun
  • William Bell
  • Katherine D. LaClair
  • Jonathan P. Ling
  • Heather Han
  • Yusuke Kageyama
  • Olga Pletnikova
  • Juan C. Troncoso
  • Philip C. WongEmail author
  • Liam L. ChenEmail author
Original Paper


Abnormal accumulation of TDP-43 into cytoplasmic or nuclear inclusions with accompanying nuclear clearance, a common pathology initially identified in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), has also been found in Alzheimer’ disease (AD). TDP-43 serves as a splicing repressor of nonconserved cryptic exons and that such function is compromised in brains of ALS and FTD patients, suggesting that nuclear clearance of TDP-43 underlies its inability to repress cryptic exons. However, whether TDP-43 cytoplasmic aggregates are a prerequisite for the incorporation of cryptic exons is not known. Here, we assessed hippocampal tissues from 34 human postmortem brains including cases with confirmed diagnosis of AD neuropathologic changes along with age-matched controls. We found that cryptic exon incorporation occurred in all AD cases exhibiting TDP-43 pathology. Furthermore, incorporation of cryptic exons was observed in the hippocampus when TDP-43 inclusions was restricted only to the amygdala, the earliest stage of TDP-43 progression. Importantly, cryptic exon incorporation could be detected in AD brains lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43. These data supports the notion that the functional consequence of nuclear depletion of TDP-43 as determined by cryptic exon incorporation likely occurs as an early event of TDP-43 proteinopathy and may have greater contribution to the pathogenesis of AD than currently appreciated. Early detection and effective repression of cryptic exons in AD patients may offer important diagnostic and therapeutic implications for this devastating illness of the elderly.


Alzheimer’s disease ALS/FTD Hippocampal sclerosis TDP-43 proteinopathy Cryptic exon Neurodegeneration 



We thank G. Rudow for assistance in collecting brain tissues. This research was supported in part by McKnight endowment fund for neuroscience (P.C.W and L.C.), the Johns Hopkins Alzheimer’s Disease Research Center pilot grant (L.C.; NIH P50AG05146), the Packard Center for ALS (L.C. and P.C.W.), the JHU Neuropathology Pelda fund (P.C.W.) and the NIH Grant (P.C.W.; R01 NS095969).

Author contributions

MS, WB, KCL, JPL, PCW and LC designed, analyzed and interpreted experiments. MS, KCL and HH performed the RT-PCR. WB, YK and MS performed the immunofluorescence and immunohistochemical stains. OP, JCT and LC evaluated brains tissues of AD and controls. LC, WB, MS, and PCW wrote the manuscript, and all authors discussed results and approved the manuscript.

Supplementary material

401_2017_1701_MOESM1_ESM.docx (7.7 mb)
Supplementary material 1 (DOCX 7872 kb)
401_2017_1701_MOESM2_ESM.avi (31.5 mb)
Supplementary material 2 (AVI 32207 kb)


  1. 1.
    Amador-Ortiz C, Dickson DW (2008) Neuropathology of hippocampal sclerosis. Handb Clin Neurol 89:569–572. doi: 10.1016/S0072-9752(07)01253-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445. doi: 10.1002/ana.21154 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arai T, Mackenzie IR, Hasegawa M, Nonoka T, Niizato K, Tsuchiya K, Iritani S, Onaya M, Akiyama H (2009) Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 117:125–136. doi: 10.1007/s00401-008-0480-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. doi: 10.1007/s00401-006-0127-z CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Buratti E, Baralle FE (2012) TDP-43: gumming up neurons through protein–protein and protein–RNA interactions. Trends Biochem Sci 37:237–247. doi: 10.1016/j.tibs.2012.03.003 CrossRefPubMedGoogle Scholar
  6. 6.
    Chiang PM, Ling J, Jeong YH, Price DL, Aja SM, Wong PC (2010) Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci USA 107:16320–16324. doi: 10.1073/pnas.1002176107 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cohen TJ, Lee VM, Trojanowski JQ (2011) TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol Med 17:659–667. doi: 10.1016/j.molmed.2011.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18:794–799. doi: 10.1038/nn.4017 CrossRefPubMedGoogle Scholar
  9. 9.
    Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13. doi: 10.1016/j.jalz.2011.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, Petersen RC, Dickson DW (2014) Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol 127:441–450. doi: 10.1007/s00401-013-1211-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L, Liesinger AM, Petersen RC, Parisi JE, Dickson DW (2016) Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol 131:571–585. doi: 10.1007/s00401-016-1537-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M, Rademakers R, Boeve BF, Parisi JE, Smith GE et al (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70:1850–1857. doi: 10.1212/01.wnl.0000304041.09418.b1 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Josephs KA, Whitwell JL, Tosakulwong N, Weigand SD, Murray ME, Liesinger AM, Petrucelli L, Senjem ML, Ivnik RJ, Parisi JE et al (2015) TAR DNA-binding protein 43 and pathological subtype of Alzheimer’s disease impact clinical features. Ann Neurol 78:697–709. doi: 10.1002/ana.24493 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM, Petrucelli L, Senjem ML, Knopman DS, Boeve BF et al (2014) TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol 127:d811–d824. doi: 10.1007/s00401-014-1269-z CrossRefGoogle Scholar
  15. 15.
    Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574. doi: 10.1038/ng.132 CrossRefPubMedGoogle Scholar
  16. 16.
    LaClair KD, Donde A, Ling JP, Jeong YH, Chhabra R, Martin LJ, Wong PC (2016) Depletion of TDP-43 decreases fibril and plaque beta-amyloid and exacerbates neurodegeneration in an Alzheimer’s mouse model. Acta Neuropathol 132:859–873. doi: 10.1007/s00401-016-1637-y CrossRefPubMedGoogle Scholar
  17. 17.
    Ling JP, Chhabra R, Merran JD, Schaughency PM, Wheelan SJ, Corden JL, Wong PC (2016) PTBP1 and PTBP2 repress nonconserved cryptic exons. Cell Rep 17:104–113. doi: 10.1016/j.celrep.2016.08.071 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ling JP, Pletnikova O, Troncoso JC, Wong PC (2015) TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349:650–655. doi: 10.1126/science.aab0983 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486CrossRefPubMedGoogle Scholar
  20. 20.
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. doi: 10.1007/s00401-011-0910-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci 18:800–806. doi: 10.1038/nn.4018 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. doi: 10.1126/science.1134108 CrossRefPubMedGoogle Scholar
  23. 23.
    Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling SC, Sun E, Wancewicz E, Mazur C et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468. doi: 10.1038/nn.2779 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672. doi: 10.1126/science.1154584 CrossRefPubMedGoogle Scholar
  25. 25.
    Tan Q, Krishna Yalamanchili H, Park J, De Maio A, Lu H-C, Wan Y-W, White JJ, Bondar VV, Sayegh LS, Liu Xet al (2016) Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum Mol Genet. doi: 10.1093/hmg/ddw337
  26. 26.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefPubMedGoogle Scholar
  27. 27.
    Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, Konig J, Hortobagyi T, Nishimura AL, Zupunski V et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. doi: 10.1038/nn.2778 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vatsavayai SC, Yoon SJ, Gardner RC, Gendron TF, Vargas JN, Trujillo A, Pribadi M, Phillips JJ, Gaus SE, Hixson JD et al (2016) Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain 139:3202–3216. doi: 10.1093/brain/aww250 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mingkuan Sun
    • 1
  • William Bell
    • 1
  • Katherine D. LaClair
    • 1
    • 5
  • Jonathan P. Ling
    • 1
  • Heather Han
    • 2
  • Yusuke Kageyama
    • 1
  • Olga Pletnikova
    • 1
  • Juan C. Troncoso
    • 1
    • 3
  • Philip C. Wong
    • 1
    • 4
    Email author
  • Liam L. Chen
    • 1
    Email author
  1. 1.Department of PathologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of BiologyJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.German Center for Neurodegenerative Diseases (DZNE)MunichGermany

Personalised recommendations