Advertisement

Acta Neuropathologica

, Volume 133, Issue 2, pp 177–196 | Cite as

ALS/FTLD: experimental models and reality

  • Rachel H. Tan
  • Yazi D. Ke
  • Lars M. IttnerEmail author
  • Glenda M. HallidayEmail author
Review

Abstract

Amyotrophic lateral sclerosis is characterised by a loss of upper and lower motor neurons and characteristic muscle weakness and wasting, the most common form being sporadic disease with neuronal inclusions containing the tar DNA-binding protein 43 (TDP-43). Frontotemporal lobar degeneration is characterised by atrophy of the frontal and/or temporal lobes, the most common clinical form being the behavioural variant, in which neuronal inclusions containing either TDP-43 or 3-repeat tau are most prevalent. Although the genetic mutations associated with these diseases have allowed various experimental models to be developed, the initial genetic forms identified remain the most common models employed to date. It is now known that these first models faithfully recapitulate only some aspects of these diseases and do not represent the majority of cases or the most common overlapping pathologies. Newer models targeting the main molecular pathologies are still rare and in some instances, lack significant aspects of the molecular pathology. However, these diseases are complex and multigenic, indicating that experimental models may need to be targeted to different disease aspects. This would allow information to be gleaned from a variety of different yet relevant models, each of which has the capacity to capture a certain aspect of the disease, and together will enable a more complete understanding of these complex and multi-layered diseases.

Keywords

Amyotrophic lateral sclerosis C9orf72 Frontotemporal lobar degeneration Microtubule associated protein tau Superoxide dismutase 1 tar DNA-binding protein 43 

Notes

Acknowledgements

The authors wish to thank Ms. Heidi Cartwright for assistance with preparation of figures.

Compliance with ethical standards

Funding

This work was supported by funding to Forefront, a collaborative research group dedicated to the study of frontotemporal dementia and motor neurone disease, from NHMRC of Australia program Grant (#1037746) and the ARC Centre of Excellence in Cognition and its Disorders Memory Node (#CE110001021). RT is an NHMRC-ARC Dementia Research Development Award Fellow (#APP1110369). YK is an ARC Discovery Early Career Researcher Award Fellow (#DE130101591). LI is a NHMRC Senior Research Fellow (#1003083). GH is a NHMRC Senior Principal Research Fellow (#630434).

References

  1. 1.
    Ahmed Z, Bigio EH, Budka H, Dickson DW, Ferrer I, Ghetti B, Giaccone G, Hatanpaa KJ, Holton JL, Josephs KA, Powers J, Spina S, Takahashi H, White CL 3rd, Revesz T, Kovacs GG (2013) Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol 126:537–544. doi: 10.1007/s00401-013-1171-0 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351PubMedGoogle Scholar
  3. 3.
    Almeida S, Zhang ZJ, Coppola G, Mao WJ, Futai K, Karydas A, Geschwind MD, Tartaglia MC, Gao FY, Gianni D, Sena-Esteves M, Geschwind DH, Miller BL, Farese RV, Gao FB (2012) Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects (vol 2, pg 789, 2012). Cell Rep 2:1471. doi: 10.1016/j.celrep.2012.11.006 CrossRefGoogle Scholar
  4. 4.
    Ash PEA, Bieniek KF, Gendron TF, Caulfield T, Lin WL, DeJesus-Hernandez M, van Blitterswijk MM, Jansen-West K, Paul JW, Rademakers R, Boylan KB, Dickson DW, Petrucelli L (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646. doi: 10.1016/j.neuron.2013.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Babin PJ, Goizet C, Raldua D (2014) Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 118:36–58. doi: 10.1016/j.pneurobio.2014.03.001 PubMedCrossRefGoogle Scholar
  6. 6.
    Badadani M, Nalbandian A, Watts GD, Vesa J, Kitazawa M, Su HL, Tanaja J, Dec E, Wallace DC, Mukherjee J, Caiozzo V, Warman M, Kimonis VE (2010) VCP associated inclusion body myopathy and paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS One 5. doi: 10.1371/journal.pone.0013183
  7. 7.
    Baizabal-Carvallo JF, Jankovic J (2016) Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat Rev Neurol 12:175–185. doi: 10.1038/nrneurol.2016.14 PubMedCrossRefGoogle Scholar
  8. 8.
    Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30:639–649. doi: 10.1523/Jneurosci.4988-09.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, Carrasco M, Phatnani HP, Puddifoot CA, Story D, Fletcher J, Park IH, Friedman BA, Daley GQ, Wyllie DJA, Hardingham GE, Wilmut I, Finkbeiner S, Maniatis T, Shaw CE, Chandran S (2012) Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA 109:5803–5808. doi: 10.1073/pnas.1202922109 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Boxer AL, Gold M, Huey E, Gao FB, Burton EA, Chow T, Kao A, Leavitt BR, Lamb B, Grether M, Knopman D, Cairns NJ, Mackenzie IR, Mitic L, Roberson ED, Van Kammen D, Cantillon M, Zahs K, Salloway S, Morris J, Tong G, Feldman H, Fillit H, Dickinson S, Khachaturian Z, Sutherland M, Farese R, Miller BL, Cummings J (2013) Frontotemporal degeneration, the next therapeutic frontier: molecules and animal models for frontotemporal degeneration drug development. Alzheimers Dement 9:176–188. doi: 10.1016/j.jalz.2012.03.002 PubMedCrossRefGoogle Scholar
  11. 11.
    Brettschneider J, Del Tredici K, Irwin DJ, Grossman M, Robinson JL, Toledo JB, Lee EB, Fang L, Van Deerlin VM, Ludolph AC, Lee VMY, Braak H, Trojanowski JQ (2015) Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD) (vol 127, pg 423, 2014). Acta Neuropathol 129:929. doi: 10.1007/s00401-015-1428-x PubMedCrossRefGoogle Scholar
  12. 12.
    Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM, Wood EM, Baek Y, Kwong L, Lee EB, Elman L, McCluskey L, Fang LB, Feldengut S, Ludolph AC, Lee VMY, Braak H, Trojanowski JQ (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38. doi: 10.1002/ana.23937 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G (2015) Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 88:861–877. doi: 10.1016/j.neuron.2015.09.045 PubMedCrossRefGoogle Scholar
  14. 14.
    Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, Halliday GM (2003) Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 60:1005–1011PubMedCrossRefGoogle Scholar
  15. 15.
    Bronner IF, ter Meulen BC, Azmani A, Severijnen LA, Willemsen R, Kamphorst W, Ravid R, Heutink P, van Swieten JC (2005) Hereditary Pick’s disease with the G272 V tau mutation shows predominant three-repeat tau pathology. Brain 128:2645–2653. doi: 10.1093/brain/awh591 PubMedCrossRefGoogle Scholar
  16. 16.
    Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U, Martinez R, Gai H, Blake R, Vaisberg E, Grskovic M, Johnson C, Irion S, Bright J, Cooper B, Nguyen L, Griswold-Prenner I, Javaherian A (2013) A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 56:355–364. doi: 10.1016/j.mcn.2013.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Burrell JR, Halliday GM, Kril JJ, Ittner LM, Gotz J, Kiernan MC, Hodges JR (2016) The frontotemporal dementia-motor neuron disease continuum. Lancet 388:919–931. doi: 10.1016/S0140-6736(16)00737-6 PubMedCrossRefGoogle Scholar
  18. 18.
    Byrne S, Elamin M, Bede P, Shatunov A, Walsh C, Corr B, Heverin M, Jordan N, Kenna K, Lynch C, McLaughlin RL, Iyer PM, O’Brien C, Phukan J, Wynne B, Bokde AL, Bradley DG, Pender N, Al-Chalabi A, Hardiman O (2012) Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol 11:232–240. doi: 10.1016/S1474-4422(12)70014-5 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cairns NJ, Bigio EH, Mackenzie IRA, Neumann M, Lee VMY, Hatanpaa KJ, White CL, Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann DMA (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22. doi: 10.1007/s00401-007-0237-2 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Carlino E, Frisaldi E, Rainero I, Asteggiano G, Cappa G, Tarenzi L, Vighetti S, Pollo A, Pinessi L, Benedetti F (2014) Nonlinear analysis of electroencephalogram in frontotemporal lobar degeneration. NeuroReport 25:496–500. doi: 10.1097/Wnr.0000000000000123 PubMedGoogle Scholar
  21. 21.
    Casci I, Pandey US (2015) A fruitful endeavor: modeling ALS in the fruit fly. Brain Res 1607:47–74. doi: 10.1016/j.brainres.2014.09.064 PubMedCrossRefGoogle Scholar
  22. 22.
    Chare L, Hodges JR, Leyton CE, McGinley C, Tan RH, Kril JJ, Halliday GM (2014) New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J Neurol Neurosurg Psychiatry 85:865–870. doi: 10.1136/jnnp-2013-306948 PubMedCrossRefGoogle Scholar
  23. 23.
    Chen ZY, Ma L (2010) Grey matter volume changes over the whole brain in amyotrophic lateral sclerosis: a voxel-wise meta-analysis of voxel based morphometry studies. Amyotroph Lateral Scler 11:549–554. doi: 10.3109/17482968.2010.516265 PubMedCrossRefGoogle Scholar
  24. 24.
    Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang YJ, Castanedes-Casey M, Lee CW, Jansen-West K, Kurti A, Murray ME, Bieniek KF, Bauer PO, Whitelaw EC, Rousseau L, Stankowski JN, Stetler C, Daughrity LM, Perkerson EA, Desaro P, Johnston A, Overstreet K, Edbauer D, Rademakers R, Boylan KB, Dickson DW, Fryer JD, Petrucelli L (2015) Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348:1151–1154. doi: 10.1126/science.aaa9344 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger BJ, Ren Z, Keebler J, Han Y, Levy SE, Boone BE, Wimbish JR, Waite LL, Jones AL, Carulli JP, Day-Williams AG, Staropoli JF, Xin WW, Chesi A, Raphael AR, McKenna-Yasek D, Cady J, Vianney de Jong JM, Kenna KP, Smith BN, Topp S, Miller J, Gkazi A, Consortium FS, Al-Chalabi A, van den Berg LH, Veldink J, Silani V, Ticozzi N, Shaw CE, Baloh RH, Appel S, Simpson E, Lagier-Tourenne C, Pulst SM, Gibson S, Trojanowski JQ, Elman L, McCluskey L, Grossman M, Shneider NA, Chung WK, Ravits JM, Glass JD, Sims KB, Van Deerlin VM, Maniatis T, Hayes SD, Ordureau A, Swarup S, Landers J, Baas F, Allen AS, Bedlack RS, Harper JW, Gitler AD, Rouleau GA, Brown R, Harms MB, Cooper GM, Harris T, Myers RM, Goldstein DB (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347:1436–1441. doi: 10.1126/science.aaa3650 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci USA 110:9535–9540. doi: 10.1073/pnas.1301175110 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cook C, Dunmore JH, Murray ME, Scheffel K, Shukoor N, Tong J, Castanedes-Casey M, Phillips V, Rousseau L, Penuliar MS, Kurti A, Dickson DW, Petrucelli L, Fryer JD (2014) Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiol Aging 35:1769–1777. doi: 10.1016/j.neurobiolaging.2013.12.023 PubMedCrossRefGoogle Scholar
  28. 28.
    Cook C, Kang SS, Carlomagno Y, Lin WL, Yue M, Kurti A, Shinohara M, Jansen-West K, Perkerson E, Castanedes-Casey M, Rousseau L, Phillips V, Bu GJ, Dickson DW, Petrucelli L, Fryer JD (2015) Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model. Hum Mol Genet 24:6198–6212. doi: 10.1093/hmg/ddv336 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, Maier I, Martin J, Nudo RJ, Ramon-Cueto A, Rouiller EM, Schnell L, Wannier T, Schwab ME, Edgerton VR (2007) Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med 13:561–566. doi: 10.1038/nm1595 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Custer SK, Neumann M, Lu H, Wright AC, Taylor JP (2010) Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum Mol Genet 19:1741–1755. doi: 10.1093/hmg/ddq050 PubMedCrossRefGoogle Scholar
  31. 31.
    Defelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5:29. doi: 10.3389/fnana.2011.00029 PubMedPubMedCentralGoogle Scholar
  32. 32.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GYR, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. doi: 10.1016/j.neuron.2011.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC (2008) Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3:637–648. doi: 10.1016/j.stem.2008.09.017 PubMedCrossRefGoogle Scholar
  34. 34.
    Donnelly CJ, Zhang PW, Pham JT, Heusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang JO, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–428. doi: 10.1016/j.neuron.2013.10.015 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova NN, Yang LC, Starkov AA, Beal F (2011) Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. Faseb J 25:4063–4072. doi: 10.1096/fj.11-186650 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka I, Aoi T, Watanabe A, Yamada Y, Morizane A, Takahashi J, Ayaki T, Ito H, Yoshikawa K, Yamawaki S, Suzuki S, Watanabe D, Hioki H, Kaneko T, Makioka K, Okamoto K, Takuma H, Tamaoka A, Hasegawa K, Nonaka T, Hasegawa M, Kawata A, Yoshida M, Nakahata T, Takahashi R, Marchetto MCN, Gage FH, Yamanaka S, Inoue H (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4. doi: 10.1126/scitranslmed.3004052
  37. 37.
    Ehrlich M, Hallmann AL, Reinhardt P, Arauzo-Bravo MJ, Korr S, Ropke A, Psathaki OE, Ehling P, Meuth SG, Oblak AL, Murrell JR, Ghetti B, Zaehres H, Scholer HR, Sterneckert J, Kuhlmann T, Hargus G (2015) Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein. Stem Cell Rep 5:83–96. doi: 10.1016/j.stemcr.2015.06.001 CrossRefGoogle Scholar
  38. 38.
    Esmaeili MA, Panahi M, Yadav S, Hennings L, Kiaei M (2013) Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int J Exp Pathol 94:56–64. doi: 10.1111/iep.12006 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fong H, Wang CZ, Knoferle J, Walker D, Balestra ME, Tong LM, Leung L, Ring KL, Seeley WW, Karydas A, Kshirsagar MA, Boxer AL, Kosik KS, Miller BL, Huang YD (2013) Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells. Stem Cell Rep 1:226–234. doi: 10.1016/j.stemcr.2013.08.001 CrossRefGoogle Scholar
  40. 40.
    Ghazi-Noori S, Froud KE, Mizielinska S, Powell C, Smidak M, Fernandez de Marco M, O’Malley C, Farmer M, Parkinson N, Fisher EM, Asante EA, Brandner S, Collinge J, Isaacs AM (2012) Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain 135:819–832. doi: 10.1093/brain/aws006 PubMedCrossRefGoogle Scholar
  41. 41.
    Ghoshal N, Dearborn JT, Wozniak DF, Cairns NJ (2012) Core features of frontotemporal dementia recapitulated in progranulin knockout mice. Neurobiol Dis 45:395–408. doi: 10.1016/j.nbd.2011.08.029 PubMedCrossRefGoogle Scholar
  42. 42.
    Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014. doi: 10.1212/WNL.0b013e31821103e6 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495. doi: 10.1126/science.1062097 PubMedCrossRefGoogle Scholar
  44. 44.
    Gotz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544. doi: 10.1038/nrn2420 PubMedCrossRefGoogle Scholar
  45. 45.
    Graham A, Davies R, Xuereb J, Halliday G, Kril J, Creasey H, Graham K, Hodges J (2005) Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain 128:597–605. doi: 10.1093/brain/awh348 PubMedCrossRefGoogle Scholar
  46. 46.
    Guo Y, Wang Q, Zhang K, An T, Shi P, Li Z, Duan W, Li C (2012) HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res 1460:88–95. doi: 10.1016/j.brainres.2012.04.003 PubMedCrossRefGoogle Scholar
  47. 47.
    Gurney ME, Pu HF, Chiu AY, Dalcanto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen WJ, Zhai P, Sufit RL, Siddique T (1994) Motor-neuron degeneration in mice that express a human Cu, Zn superoxide-dismutase mutation. Science 264:1772–1775. doi: 10.1126/science.8209258 PubMedCrossRefGoogle Scholar
  48. 48.
    Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, Beach TG, Buratti E, Baralle F, Morita M, Nakano I, Oda T, Tsuchiya K, Akiyama H (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70. doi: 10.1002/ana.21425 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hatzipetros T, Bogdanik LP, Tassinari VR, Kidd JD, Moreno AJ, Davis C, Osborne M, Austin A, Vieira FG, Lutz C, Perrin S (2014) C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Res 1584:59–72. doi: 10.1016/j.brainres.2013.10.013 PubMedCrossRefGoogle Scholar
  50. 50.
    Hedges EC, Mehler VJ, Nishimura AL (2016) The use of stem cells to model amyotrophic lateral sclerosis and frontotemporal dementia: from basic research to regenerative medicine. Stem Cells Int. doi: 10.1155/2016/9279516 PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ho R, Sances S, Gowing G, Amoroso MW, O’Rourke JG, Sahabian A, Wichterle H, Baloh RH, Sareen D, Svendsen CN (2016) ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks. Nat Neurosci 19:1256–1267. doi: 10.1038/nn.4345 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hogg M, Grujic ZM, Baker M, Demirci S, Guillozet AL, Sweet AP, Herzog LL, Weintraub S, Mesulam MM, LaPointe NE, Gamblin TC, Berry RW, Binder LI, de Silva R, Lees A, Espinoza M, Davies P, Grover A, Sahara N, Ishizawa T, Dickson D, Yen SH, Hutton M, Bigio EH (2003) The L266V tau mutation is associated with frontotemporal dementia and Pick-like 3R and 4R tauopathy. Acta Neuropathol 106:323–336. doi: 10.1007/s00401-003-0734-x PubMedCrossRefGoogle Scholar
  53. 53.
    Hornberger M, Wong S, Tan R, Irish M, Piguet O, Kril J, Hodges JR, Halliday G (2012) In vivo and post-mortem memory circuit integrity in frontotemporal dementia and Alzheimer’s disease. Brain 135:3015–3025. doi: 10.1093/brain/aws239 PubMedCrossRefGoogle Scholar
  54. 54.
    Huang C, Zhou HX, Tong JB, Chen H, Liu YJ, Wang DA, Wei XT, Xia XG (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Plos Genet 7. doi: 10.1371/journal.pgen.1002011
  55. 55.
    Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705. doi: 10.1038/31508 PubMedCrossRefGoogle Scholar
  56. 56.
    Igaz LM, Kwong LK, Lee EB, Chen-Plotkin A, Swanson E, Unger T, Malunda J, Xu Y, Winton MJ, Trojanowski JQ, Lee VMY (2011) Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Investig 121:726–738. doi: 10.1172/Jci44867 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Igaz LM, Kwong LK, Xu Y, Truax AC, Uryu K, Neumann M, Clark CM, Elman LB, Miller BL, Grossman M, McCluskey LF, Trojanowski JQ, Lee VM (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173:182–194. doi: 10.2353/ajpath.2008.080003 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Iguchi Y, Katsuno M, Niwa J, Takagi S, Ishigaki S, Ikenaka K, Kawai K, Watanabe H, Yamanaka K, Takahashi R, Misawa H, Sasaki S, Tanaka F, Sobue G (2013) Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain 136:1371–1382. doi: 10.1093/brain/awt029 PubMedCrossRefGoogle Scholar
  59. 59.
    Iovino M, Agathou S, Gonzalez-Rueda A, Velasco-Herrera MD, Borroni B, Alberici A, Lynch T, O’Dowd S, Geti I, Gaffney D, Vallier L, Paulsen O, Karadottir RT, Spillantini MG (2015) Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain 138. doi: 10.1093/brain/awv222
  60. 60.
    Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12. doi: 10.1038/nrneurol.2015.225
  61. 61.
    Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, Lee VM (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762PubMedCrossRefGoogle Scholar
  62. 62.
    Ittner AA, Gladbach A, Bertz J, Suh LS, Ittner LM (2014) p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun 2:149. doi: 10.1186/s40478-014-0149-z PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ittner LM, Fath T, Ke YD, Bi M, van Eersel J, Li KM, Gunning P, Gotz J (2008) Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci USA 105:15997–16002. doi: 10.1073/pnas.0808084105 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ittner LM, Halliday GM, Kril JJ, Gotz J, Hodges JR, Kiernan MC (2015) OPINION FTD and ALS-translating mouse studies into clinical trials. Nat Rev Neurol 11:360–366. doi: 10.1038/nrneurol.2015.65 PubMedCrossRefGoogle Scholar
  65. 65.
    Iyer PM, Egan C, Pinto-Grau M, Burke T, Elamin M, Nasseroleslami B, Pender N, Lalor EC, Hardiman O (2015) Functional connectivity changes in resting-state EEG as potential biomarker for amyotrophic lateral sclerosis. PLoS One 10:e0128682. doi: 10.1371/journal.pone.0128682 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D, Chun S, Sun SY, Ling SC, Myers B, Engelhardt J, Katz M, Baughn M, Platoshyn O, Marsala M, Watt A, Heyser CJ, Ard MC, De Muynck L, Daughrity LM, Swing DA, Tessarollo L, Jung CJ, Delpoux A, Utzschneider DT, Hedrick SM, de Jong PJ, Edbauer D, Van Damme P, Petrucelli L, Shaw CE, Bennett CF, Da Cruz S, Ravits J, Rigo F, Cleveland DW, Lagier-Tourenne C (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in c9orf72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90:535–550. doi: 10.1016/j.neuron.2016.04.006 PubMedCrossRefGoogle Scholar
  67. 67.
    Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, Dickson DW (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122:137–153. doi: 10.1007/s00401-011-0839-6 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kayasuga Y, Chiba S, Suzuki M, Kikusui T, Matsuwaki T, Yamanouchi K, Kotaki H, Horai R, Iwakura Y, Nishihara M (2007) Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res 185:110–118. doi: 10.1016/j.bbr.2007.07.020 PubMedCrossRefGoogle Scholar
  69. 69.
    Ke YD, van Hummel A, Stevens CH, Gladbach A, Ippati S, Bi MA, Lee WS, Kruger S, van der Hoven J, Volkerling A, Bongers A, Halliday G, Haass NK, Kiernan M, Delerue F, Ittner LM (2015) Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS. Acta Neuropathol 130:661–678. doi: 10.1007/s00401-015-1486-0 PubMedCrossRefGoogle Scholar
  70. 70.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotroph Lateral Scler. Lancet 377:942–955. doi: 10.1016/S0140-6736(10)61156-7 PubMedCrossRefGoogle Scholar
  71. 71.
    Koss DJ, Robinson L, Drever BD, Plucinska K, Stoppelkamp S, Veselcic P, Riedel G, Platt B (2016) Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol Dis 91:105–123. doi: 10.1016/j.nbd.2016.03.002 PubMedCrossRefGoogle Scholar
  72. 72.
    Kraemer BC, Schuck T, Wheeler JM, Robinson LC, Trojanowski JQ, Lee VMY, Schellenberg GD (2010) Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol 119:409–419. doi: 10.1007/s00401-010-0659-0 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lanata SC, Miller BL (2016) The behavioural variant frontotemporal dementia (bvFTD) syndrome in psychiatry. J Neurol Neurosurg Psychiatry 87:501–511. doi: 10.1136/jnnp-2015-310697 PubMedCrossRefGoogle Scholar
  74. 74.
    Lee S, Huang EJ (2015) Modeling ALS and FTD with iPSC-derived neurons. Brain Res. doi: 10.1016/j.brainres.2015.10.003 Google Scholar
  75. 75.
    Leroy K, Bretteville A, Schindowski K, Gilissen E, Authelet M, De Decker R, Yilmaz Z, Buee L, Brion JP (2007) Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice. Am J Pathol 171:976–992. doi: 10.2353/ajpath.2007.070345 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405. doi: 10.1038/78078 PubMedCrossRefGoogle Scholar
  77. 77.
    Liu Y, Pattamatta A, Zu T, Reid T, Bardhi O, Borchelt DR, Yachnis AT, Ranum LP (2016) C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90:521–534. doi: 10.1016/j.neuron.2016.04.005 PubMedCrossRefGoogle Scholar
  78. 78.
    Liu YC, Chiang PM, Tsai KJ (2013) Disease animal models of TDP-43 proteinopathy and their pre-clinical applications. Int J Mol Sci 14:20079–20111. doi: 10.3390/ijms141020079 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E, Eurals (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg psychiatry 81:385–390. doi: 10.1136/jnnp.2009.183525 PubMedCrossRefGoogle Scholar
  80. 80.
    Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079PubMedCrossRefGoogle Scholar
  81. 81.
    Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L, Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, Shaw PJ, Lee VM, Trojanowski JQ (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434. doi: 10.1002/ana.21147 PubMedCrossRefGoogle Scholar
  82. 82.
    Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, Perry RH, Trojanowski JQ, Mann DM, Lee VM (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113. doi: 10.1007/s00401-011-0845-8 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, Min SW, Gan L, Finkbeiner S, Huang EJ, Farese RV Jr (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122:3955–3959. doi: 10.1172/JCI63113 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Matsumoto A, Okada Y, Nakamichi M, Nakamura M, Toyama Y, Sobue G, Nagai M, Aoki M, Itoyama Y, Okano H (2006) Disease progression of human SOD1 (G93A) transgenic ALS model rats. J Neurosci Res 83:119–133. doi: 10.1002/jnr.20708 PubMedCrossRefGoogle Scholar
  85. 85.
    McGoldrick P, Joyce PI, Fisher EMC, Greensmith L (2013) Rodent models of amyotrophic lateral sclerosis. Bba-Mol Basis Dis 1832:1421–1436. doi: 10.1016/j.bbadis.2013.03.012 CrossRefGoogle Scholar
  86. 86.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VMY (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. doi: 10.1126/science.1134108 PubMedCrossRefGoogle Scholar
  87. 87.
    O’Rourke JG, Bogdanik L, Muhammad AKMG, Gendron TF, Kim KJ, Austin A, Cady J, Liu EY, Zarrow J, Grant S, Ho R, Bell S, Carmona S, Simpkinson M, Lall D, Wu K, Daughrity L, Dickson DW, Harms MB, Petrucelli L, Lee EB, Lutz CM, Baloh RH (2015) C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron 88:892–901. doi: 10.1016/j.neuron.2015.10.027 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Onyike CU, Diehl-Schmid J (2013) The epidemiology of frontotemporal dementia. Int Rev Psychiatry 25:130–137. doi: 10.3109/09540261.2013.776523 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Peters OM, Cabrera GT, Tran H, Gendron TF, McKeon JE, Metterville J, Weiss A, Wightman N, Salameh J, Kim J, Sun H, Boylan KB, Dickson D, Kennedy Z, Lin Z, Zhang YJ, Daughrity L, Jung C, Gao FB, Sapp PC, Horvitz HR, Bosco DA, Brown SP, de Jong P, Petrucelli L, Mueller C, Brown RH Jr (2015) Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 88:902–909. doi: 10.1016/j.neuron.2015.11.018 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Petkau TL, Neal SJ, Milnerwood A, Mew A, Hill AM, Orban P, Gregg J, Lu G, Feldman HH, Mackenzie IRA, Raymond LA, Leavitt BR (2012) Synaptic dysfunction in progranulin-deficient mice. Neurobiol Dis 45:711–722. doi: 10.1016/j.nbd.2011.10.016 PubMedCrossRefGoogle Scholar
  91. 91.
    Philips T, Rothstein JD (2015) Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol 69:5.67.1–21. doi: 10.1002/0471141755.ph0567s69
  92. 92.
    Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83:102–108. doi: 10.1136/jnnp-2011-300188 PubMedCrossRefGoogle Scholar
  93. 93.
    Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupre N (2016) From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 4. doi: 10.1186/s40478-016-0340-5
  94. 94.
    Preza E, Hardy J, Warner T, Wray S (2016) Review: induced pluripotent stem cell models of frontotemporal dementia. Neuropathol Appl Neurobiol 42:497–520. doi: 10.1111/nan.12334 PubMedCrossRefGoogle Scholar
  95. 95.
    Przybyla M, Stevens CH, van der Hoven J, Harasta A, Bi M, Ittner A, van Hummel A, Hodges JR, Piguet O, Karl T, Kassiou M, Housley GD, Ke YD, Ittner LM, Eersel J (2016) Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia. Neurosci Lett 631:24–29. doi: 10.1016/j.neulet.2016.08.007 PubMedCrossRefGoogle Scholar
  96. 96.
    Raitano S, Ordovas L, De Muynck L, Guo WT, Espuny-Camacho I, Geraerts M, Khurana S, Vanuytsel K, Toth BI, Voets T, Vandenberghe R, Cathomen T, Van Den Bosch L, Vanderhaeghen P, Van Damme P, Verfaillie CM (2015) Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia. Stem Cell Rep 4:16–24. doi: 10.1016/j.stemcr.2014.12.001 CrossRefGoogle Scholar
  97. 97.
    Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477. doi: 10.1093/brain/awr179 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ricketts T, McGoldrick P, Fratta P, de Oliveira HM, Kent R, Phatak V, Brandner S, Blanco G, Greensmith L, Acevedo-Arozena A, Fisher EM (2014) A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects. PLoS One 9:e85962. doi: 10.1371/journal.pone.0085962 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Roberson ED (2012) Mouse models of frontotemporal dementia. Ann Neurol 72:837–849. doi: 10.1002/ana.23722 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Rockenstein E, Overk CR, Ubhi K, Mante M, Patrick C, Adame A, Bisquert A, Trejo-Morales M, Spencer B, Masliah E (2015) A novel triple repeat mutant tau transgenic model that mimics aspects of pick’s disease and fronto-temporal tauopathies. PLoS One 10. doi: 10.1371/journal.pone.0121570
  101. 101.
    Rodriguez-Ortiz CJ, Hoshino H, Cheng D, Liu-Yescevitz L, Blurton-Jones M, Wolozin B, LaFerla FM, Kitazawa M (2013) Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice. Am J Pathol 183:504–515. doi: 10.1016/j.ajpath.2013.04.014 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rohrer JD, Warren JD (2011) Phenotypic signatures of genetic frontotemporal dementia. Curr Opin Neurol 24:542–549. doi: 10.1097/WCO.0b013e32834cd442 PubMedCrossRefGoogle Scholar
  103. 103.
    SantaCruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481. doi: 10.1126/science.1113694 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sareen D, O’Rourke JG, Meera P, Muhammad AKMG, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5. doi: 10.1126/scitranslmed.3007529
  105. 105.
    Scott L, Kiss T, Kawabe TT, Hajos M (2016) Neuronal network activity in the hippocampus of tau transgenic (Tg4510) mice. Neurobiol Aging 37:66–73. doi: 10.1016/j.neurobiolaging.2015.10.002 PubMedCrossRefGoogle Scholar
  106. 106.
    Seelaar H, Kamphorst W, Rosso SM, Azmani A, Masdjedi R, de Koning I, Maat-Kievit JA, Anar B, Kaat LD, Breedveld GJ, Dooijes D, Rozemuller JM, Bronner IF, Rizzu P, van Swieten JC (2008) Distinct genetic forms of frontotemporal dementia. Neurology 71:1220–1226. doi: 10.1212/01.wnl.0000319702.37497.72 PubMedCrossRefGoogle Scholar
  107. 107.
    Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C, Siller R, Burr K, Haghi G, Story D, Nishimura AL, Carrasco MA, Phatnani HP, Shum C, Wilmut I, Maniatis T, Shaw CE, Finkbeiner S, Chandran S (2013) Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. P Natl Acad Sci USA 110:4697–4702. doi: 10.1073/pnas.1300398110 CrossRefGoogle Scholar
  108. 108.
    Smittkamp SE, Spalding HN, Brown JW, Gupte AA, Chen J, Nishimune H, Geiger PC, Stanford JA (2010) Measures of bulbar and spinal motor function, muscle innervation, and mitochondrial function in ALS rats. Behav Brain Res 211:48–57. doi: 10.1016/j.bbr.2010.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Sposito T, Preza E, Mahoney CJ, Seto-Salvia N, Ryan NS, Morris HR, Arber C, Devine MJ, Houlden H, Warner TT, Bushell TJ, Zagnoni M, Kunath T, Livesey FJ, Fox NC, Rossor MN, Hardy J, Wray S (2015) Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Hum Mol Genet 24:5260–5269. doi: 10.1093/hmg/ddv246 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, Julien JP (2011) Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134:2610–2626. doi: 10.1093/brain/awr159 PubMedCrossRefGoogle Scholar
  111. 111.
    Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou LP, Rune G, Mandelkow E, D’Hooge R, Alzheimer C, Mandelkow EM (2011) Tau-Induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic tau mutant. J Neurosci 31:2511–2525. doi: 10.1523/Jneurosci.5245-10.2011 PubMedCrossRefGoogle Scholar
  112. 112.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 PubMedCrossRefGoogle Scholar
  113. 113.
    Takeuchi H, Iba M, Inoue H, Higuchi M, Takao K, Tsukita K, Karatsu Y, Iwamoto Y, Miyakawa T, Suhara T, Trojanowski JQ, Lee VMY, Takahashi R (2011) P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating. PLoS One 6. doi: 10.1371/journal.pone.0021050
  114. 114.
    Takeuchi R, Tada M, Shiga A, Toyoshima Y, Konno T, Sato T, Nozaki H, Kato T, Horie M, Shimizu H, Takebayashi H, Onodera O, Nishizawa M, Kakita A, Takahashi H (2016) Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: evidence for clinico-pathologic subtypes. Acta Neuropathol Commun 4:61. doi: 10.1186/s40478-016-0335-2 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Tan RH, Kril JJ, Fatima M, McGeachie A, McCann H, Shepherd C, Forrest SL, Affleck A, Kwok JB, Hodges JR, Kiernan MC, Halliday GM (2015) TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. Brain 138:3110–3122. doi: 10.1093/brain/awv220 PubMedCrossRefGoogle Scholar
  116. 116.
    Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M (2014) Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun 2:78. doi: 10.1186/s40478-014-0078-x PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Therrien M, Parker JA (2014) Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans. Front Genet 5:85. doi: 10.3389/fgene.2014.00085 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Tsai KJ, Yang CH, Fang YH, Cho KH, Chien WL, Wang WT, Wu TW, Lin CP, Fu WM, Shen CKJ (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673. doi: 10.1084/jem.20092164 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Tsuji H, Arai T, Kametani F, Nonaka T, Yamashita M, Suzukake M, Hosokawa M, Yoshida M, Hatsuta H, Takao M, Saito Y, Murayama S, Akiyama H, Hasegawa M, Mann DM, Tamaoka A (2012) Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135:3380–3391. doi: 10.1093/brain/aws230 PubMedCrossRefGoogle Scholar
  120. 120.
    Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12:310–322. doi: 10.1016/S1474-4422(13)70036-X PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Van der Jeugd A, Vermaercke B, Halliday GM, Staufenbiel M, Gotz J (2016) Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia. Neurobiol Learn Mem 130:34–43. doi: 10.1016/j.nlm.2016.01.007 PubMedCrossRefGoogle Scholar
  122. 122.
    van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Gotz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci USA 107:13888–13893. doi: 10.1073/pnas.1009038107 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    van Eersel J, Stevens CH, Przybyla M, Gladbach A, Stefanoska K, Chan CK, Ong WY, Hodges JR, Sutherland GT, Kril JJ, Abramowski D, Staufenbiel M, Halliday GM, Ittner LM (2015) Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 41:906–925. doi: 10.1111/nan.12233 PubMedCrossRefGoogle Scholar
  124. 124.
    Vucic S, Nicholson GA, Kiernan MC (2008) Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131:1540–1550. doi: 10.1093/brain/awn071 PubMedCrossRefGoogle Scholar
  125. 125.
    Walker AK, Spiller KJ, Ge GH, Zheng A, Xu Y, Zhou M, Tripathy K, Kwong LK, Trojanowski JQ, Lee VMY (2015) Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol 130:643–660. doi: 10.1007/s00401-015-1460-x PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Warmus BA, Sekar DR, McCutchen E, Schellenberg GD, Roberts RC, McMahon LL, Roberson ED (2014) Tau-mediated NMDA receptor impairment underlies dysfunction of a selectively vulnerable network in a mouse model of frontotemporal dementia. J Neurosci 34:16482–16495. doi: 10.1523/Jneurosci.3418-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Warren JD, Rohrer JD, Rossor MN (2013) Clinical review. Frontotemporal dementia. BMJ 347:f4827. doi: 10.1136/bmj.f4827 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814. doi: 10.1073/pnas.0908767106 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I, Smits V, Ceuterick-de Groote C, Van Broeckhoven C, Kumar-Singh S (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3858–3863. doi: 10.1073/pnas.0912417107 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wils H, Kleinberger G, Pereson S, Janssens J, Capell A, Van Dam D, Cuijt I, Joris G, De Deyn PP, Haass C, Van Broeckhoven C, Kumar-Singh S (2012) Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol 228:67–76. doi: 10.1002/path.4043 PubMedGoogle Scholar
  131. 131.
    Wren MC, Zhao J, Liu CC, Murray ME, Atagi Y, Davis MD, Fu Y, Okano HJ, Ogaki K, Strongosky AJ, Tacik P, Rademakers R, Ross OA, Dickson DW, Wszolek ZK, Kanekiyo T, Bu GJ (2015) Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Mol Neurodegener 10. doi: 10.1186/s13024-015-0042-7
  132. 132.
    Wu LS, Cheng WC, Shen CK (2012) Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J Biol Chem 287:27335–27344. doi: 10.1074/jbc.M112.359000 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Yang C, Wang H, Qiao T, Yang B, Aliaga L, Qiu L, Tan W, Salameh J, McKenna-Yasek DM, Smith T, Peng L, Moore MJ, Brown RH Jr, Cai H, Xu Z (2014) Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 111:E1121–E1129. doi: 10.1073/pnas.1322641111 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, Ma X, Ma Y, Iadecola C, Beal MF, Nathan C, Ding A (2010) Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med 207:117–128. doi: 10.1084/jem.20091568 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yin FF, Dumont M, Banerjee R, Ma Y, Li HH, Lin MT, Beal MF, Nathan C, Thomas B, Ding AH (2010) Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. Faseb J 24:4639–4647. doi: 10.1096/fj.10-161471 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Yin HZ, Nalbandian A, Hsu CI, Li S, Llewellyn KJ, Mozaffar T, Kimonis VE, Weiss JH (2012) Slow development of ALS-like spinal cord pathology in mutant valosin-containing protein gene knock-in mice. Cell Death Dis 3:e374. doi: 10.1038/cddis.2012.115 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Zhang ZJ, Almeida S, Lu YB, Nishimura AL, Peng LT, Sun DQ, Wu B, Karydas AM, Tartaglia MC, Fong JC, Miller BL, Farese RV, Moore MJ, Shaw CE, Gao FB (2013) Downregulation of MicroRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PLoS One 8. doi: 10.1371/journal.pone.0076055

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Neuroscience Research AustraliaRandwickAustralia
  2. 2.School of Medical SciencesUniversity of NSWSydneyAustralia
  3. 3.Brain and Mind Centre, Sydney Medical Schoolthe University of SydneySydneyAustralia
  4. 4.Motor Neuron Disease Unit, Department of Anatomy, Faculty of MedicineUniversity of NSWSydneyAustralia
  5. 5.Dementia Research Unit, Department of Anatomy, Faculty of MedicineUniversity of NSWSydneyAustralia

Personalised recommendations