Advertisement

Acta Neuropathologica

, Volume 133, Issue 3, pp 395–407 | Cite as

Presynaptic proteins complexin-I and complexin-II differentially influence cognitive function in early and late stages of Alzheimer’s disease

  • Alfredo Ramos-Miguel
  • Ken Sawada
  • Andrea A. Jones
  • Allen E. Thornton
  • Alasdair M. Barr
  • Sue E. Leurgans
  • Julie A. Schneider
  • David A. Bennett
  • William G. Honer
Original Paper

Abstract

Progressive accumulation of Alzheimer’s disease-related pathology is associated with cognitive dysfunction. Differences in cognitive reserve may contribute to individual differences in cognitive function in the presence of comparable neuropathology. The protective effects of cognitive reserve could contribute differentially in early versus late stages of the disease. We investigated presynaptic proteins as measures of brain reserve (a subset of total cognitive reserve), and used Braak staging to estimate the progression of Alzheimer’s disease. Antemortem evaluations of cognitive function, postmortem assessments of pathologic indices, and presynaptic protein analyses, including the complexins I and II as respective measures of inhibitory and excitatory terminal function, were assayed in multiple key brain regions in 418 deceased participants from a community study. After covarying for demographic variables, pathologic indices, and overall synapse density, lower brain complexin-I and -II levels contributed to cognitive dysfunction (P < 0.01). Each complexin appeared to be dysregulated at a different Braak stage. Inhibitory complexin-I explained 14.4% of the variance in global cognition in Braak 0–II, while excitatory complexin-II explained 7.3% of the variance in Braak V–VI. Unlike other presynaptic proteins, complexins did not colocalize with pathologic tau within neuritic plaques, suggesting that these functional components of the synaptic machinery are cleared early from dystrophic neurites. Moreover, complexin levels showed distinct patterns of change related to memory challenges in a rat model, supporting the functional specificity of these proteins. The present results suggest that disruption of inhibitory synaptic terminals may trigger early cognitive impairment, while excitatory terminal disruption may contribute relatively more to later cognitive impairment.

Keywords

Synaptic pathology Inhibitory terminals Cognitive decline Dementia Braak staging Postmortem human brain Aging study 

Notes

Acknowledgements

We thank Hong-Ying Li and Jenny Yang for their skillful technical assistance. The present work was financed with Grants from the Canadian Institutes of Health Research (MT-14037, MOP-81112). The Memory and Aging Project represents a collaborative, multidisciplinary and prospective research supported by the National Institute on Aging (Grants R01AG17917, R01AG42210). Dr. W.G. Honer was supported by the Jack Bell Chair in Schizophrenia.

Compliance with ethical standards

Conflict of interest

Dr. W.G. Honer has received consulting fees or sat on paid advisory boards for: In Silico, Lundbeck/Otsuka, Eli Lilly, and Roche. Dr. A.M. Barr is on the advisory board or received consulting fees from Roche Canada, and received educational grant support from BMS Canada. The Organizations cited above had no role in (and, therefore, did not influence) the design of this study, the interpretation of results, and/or preparation of the manuscript. All other authors have no financial interest on the reported data and declare that no competing interests exist.

Supplementary material

401_2016_1647_MOESM1_ESM.docx (157 kb)
Supplementary material 1 (DOCX 157 kb)
401_2016_1647_MOESM2_ESM.docx (30 kb)
Supplementary material 2 (DOCX 29 kb)
401_2016_1647_MOESM3_ESM.docx (140 kb)
Supplementary material 3 (DOCX 140 kb)
401_2016_1647_MOESM4_ESM.docx (171 kb)
Supplementary material 4 (DOCX 170 kb)
401_2016_1647_MOESM5_ESM.docx (24 kb)
Supplementary material 5 (DOCX 23 kb)
401_2016_1647_MOESM6_ESM.pdf (723 kb)
Supplementary material 6 (PDF 722 kb)
401_2016_1647_MOESM7_ESM.pdf (552 kb)
Supplementary material 7 (PDF 552 kb)
401_2016_1647_MOESM8_ESM.pdf (590 kb)
Supplementary material 8 (PDF 589 kb)

References

  1. 1.
    Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL, Gallagher M (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474. doi: 10.1016/j.neuron.2012.03.023 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barakauskas VE, Beasley CL, Barr AM, Ypsilanti AR, Li H-Y, Thornton AE, Wong H, Rosokilja G, Mann JJ, Mancevski B, Jakovski Z, Davceva N, Ilievski B, Dwork AJ, Falkai P, Honer WG (2010) A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacol 35:1226–1238. doi: 10.1038/npp.2009.228 CrossRefGoogle Scholar
  3. 3.
    Begemann M, Grube S, Papiol S, Malzahn D, Krampe H, Ribbe K, Friedrichs H, Radyushkin KA, El-Kordi A, Benseler F, Hannke K, Sperling S, Schwerdtfeger D, Thanhäuser I, Gerchen MF, Ghorbani M, Gutwinski S, Hilmes C, Leppert R, Ronnenberg A, Sowislo J, Stawicki S, Stödtke M, Szuszies C, Reim K, Riggert J, Eckstein F, Falkai P, Bickeböller H, Nave K-A, Brose N, Ehrenreich H (2010) Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch Gen Psychiatry 67:879–888. doi: 10.1001/archgenpsychiatry.2010.107 CrossRefPubMedGoogle Scholar
  4. 4.
    Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurol 66:1837–1844. doi: 10.1212/01.wnl.0000219668.47116.e6 CrossRefGoogle Scholar
  5. 5.
    Bennett DA, Schneider JA, Buchman AS, Mendes de Leon C, Bienias JL, Wilson RS (2005) The Rush Memory and Aging Project: study design and baseline characteristics of the study cohort. Neuroepidemiol 25:163–175. doi: 10.1159/000087446 CrossRefGoogle Scholar
  6. 6.
    Bennett DA, Wilson RS, Arvanitakis Z, Boyle PA, de Toledo-Morrell L, Schneider JA (2013) Selected findings from the Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 33(Suppl 1):S397–S403. doi: 10.3233/JAD-2012-129007 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bossers K, Wirz KTS, Meerhoff GF, Essing AHW, van Dongen JW, Houba P, Kruse CG, Verhaagen J, Swaab DF (2010) Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer’s disease. Brain 133:3699–3723. doi: 10.1093/brain/awq258 CrossRefPubMedGoogle Scholar
  8. 8.
    Boyle PA, Wilson RS, Aggarwal NT, Tang Y, Bennett DA (2006) Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurol 67:441–445. doi: 10.1212/01.wnl.0000228244.10416.20 CrossRefGoogle Scholar
  9. 9.
    Boyle PA, Wilson RS, Yu L, Barr AM, Honer WG, Schneider JA, Bennett DA (2013) Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol 74:478–489. doi: 10.1002/ana.23964 CrossRefPubMedGoogle Scholar
  10. 10.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMedGoogle Scholar
  11. 11.
    Braak H, Del Tredici K (2015) The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138:2814–2833. doi: 10.1093/brain/awv236 CrossRefPubMedGoogle Scholar
  12. 12.
    Brion JP, Couck AM, Bruce M, Anderton B, Flament-Durand J (1991) Synaptophysin and chromogranin A immunoreactivities in senile plaques of Alzheimer’s disease. Brain Res 539:143–150CrossRefPubMedGoogle Scholar
  13. 13.
    Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold K-H, Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321:1686–1689. doi: 10.1126/science.1162844 CrossRefPubMedGoogle Scholar
  14. 14.
    Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein–protein colocalization in live cells. Biophys J 86:3993–4003. doi: 10.1529/biophysj.103.038422 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, Arnold SE, Attems J, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Gearing M, Grinberg LT, Hof PR, Hyman BT, Jellinger K, Jicha GA, Kovacs GG, Knopman DS, Kofler J, Kukull WA, Mackenzie IR, Masliah E, McKee A, Montine TJ, Murray ME, Neltner JH, Santa-Maria I, Seeley WW, Serrano-Pozo A, Shelanski ML, Stein T, Takao M, Thal DR, Toledo JB, Troncoso JC, Vonsattel JP, White CL, Wisniewski T, Woltjer RL, Yamada M, Nelson PT (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766. doi: 10.1007/s00401-014-1349-0 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cumbo E, Ligori LD (2010) Levetiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer’s disease. Epilepsy Behav 17:461–466. doi: 10.1016/j.yebeh.2010.01.015 CrossRefPubMedGoogle Scholar
  17. 17.
    Davis S, Rodger J, Hicks A, Mallet J, Laroche S (1996) Brain structure and task-specific increase in expression of the gene encoding syntaxin 1B during learning in the rat: a potential molecular marker for learning-induced synaptic plasticity in neural networks. Eur J Neurosci 8:2068–2074CrossRefPubMedGoogle Scholar
  18. 18.
    Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hass J, Walton E, Kirsten H, Turner J, Wolthusen R, Roessner V, Sponheim SR, Holt D, Gollub R, Calhoun VD, Ehrlich S (2014) Complexin2 modulates working memory-related neural activity in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 265:137–145. doi: 10.1007/s00406-014-0550-4 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Honer WG, Barr AM, Sawada K, Thornton AE, Morris MC, Leurgans SE, Schneider JA, Bennett DA (2012) Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry 2:e114. doi: 10.1038/tp.2012.38 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Honer WG, Hu L, Davies P (1993) Human synaptic proteins with a heterogeneous distribution in cerebellum and visual cortex. Brain Res 609:9–20CrossRefPubMedGoogle Scholar
  22. 22.
    Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314Google Scholar
  23. 23.
    Koliatsos VE, Kecojevic A, Troncoso JC, Gastard MC, Bennett DA, Schneider JA (2006) Early involvement of small inhibitory cortical interneurons in Alzheimer’s disease. Acta Neuropathol 112:147–162. doi: 10.1007/s00401-006-0068-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Lewis J, Dickson DW (2015) Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 131:27–48. doi: 10.1007/s00401-015-1507-z CrossRefPubMedGoogle Scholar
  25. 25.
    Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H (2016) Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci 8:31. doi: 10.3389/fnagi.2016.00031 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Luo J, Lee SH, VandeVrede L, Qin Z, Ben Aissa M, Larson J, Teich AF, Arancio O, D’Souza Y, Elharram A, Koster K, Tai LM, LaDu MJ, Bennett BM, Thatcher GRJ (2016) A multifunctional therapeutic approach to disease modification in multiple familial mouse models and a novel sporadic model of Alzheimer’s disease. Mol Neurodegener 11:35. doi: 10.1186/s13024-016-0103-6 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Luo J, Lee SH, VandeVrede L, Qin Z, Piyankarage S, Tavassoli E, Asghodom RT, Ben Aissa M, Fà M, Arancio O, Yue L, Pepperberg DR, Thatcher GRJ (2015) Re-engineering a neuroprotective, clinical drug as a procognitive agent with high in vivo potency and with GABAA potentiating activity for use in dementia. BMC Neurosci 16:67. doi: 10.1186/s12868-015-0208-9 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, Fuks B (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci 101:9861–9866. doi: 10.1073/pnas.0308208101 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Masliah E, Honer WG, Mallory M, Voigt M, Kushner P, Hansen L, Terry R (1994) Topographical distribution of synaptic-associated proteins in the neuritic plaques of Alzheimer’s disease hippocampus. Acta Neuropathol 87:135–142CrossRefPubMedGoogle Scholar
  30. 30.
    Matveeva EA, Vanaman TC, Whiteheart SW, Slevin JT (2008) Levetiracetam prevents kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes. Epilepsia 49:1749–1758. doi: 10.1111/j.1528-1167.2008.01687.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Minger SL, Honer WG, Esiri MM, McDonald B, Keene J, Nicoll JA, Carter J, Hope T, Francis PT (2001) Synaptic pathology in prefrontal cortex is present only with severe dementia in Alzheimer disease. J Neuropathol Exp Neurol 60:929–936CrossRefPubMedGoogle Scholar
  32. 32.
    Mirra SS, Hart MN, Terry RD (1993) Making the diagnosis of Alzheimer’s disease. A primer for practicing pathologists. Arch Pathol Lab Med 117:132–144PubMedGoogle Scholar
  33. 33.
    National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer”s Disease (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer“s disease. Neurobiol Aging 18(4S):S1–S2Google Scholar
  34. 34.
    Neuropathology Group, Medical Research Council Cognitive Function and Aging Study (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 357:169–175CrossRefGoogle Scholar
  35. 35.
    Palop JJ, Mucke L (2009) Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 66:435–440. doi: 10.1001/archneurol.2009.15 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ramos-Miguel A, Hercher C, Beasley CL, Barr AM, Bayer TA, Falkai P, Leurgans SE, Schneider JA, Bennett DA, Honer WG (2015) Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol Neurodegener 10:65. doi: 10.1186/s13024-015-0061-4 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ramos-Miguel A, Honer WG, Boyda HN, Sawada K, Beasley CL, Procyshyn RM, Barr AM (2015) Exercise prevents downregulation of hippocampal presynaptic proteins following olanzapine-elicited metabolic dysregulation in rats: Distinct roles of inhibitory and excitatory terminals. Neurosci 301:298–311. doi: 10.1016/j.neuroscience.2015.06.022 CrossRefGoogle Scholar
  38. 38.
    Riley KP, Snowdon DA, Markesbery WR (2002) Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Ann Neurol 51:567–577. doi: 10.1002/ana.10161 CrossRefPubMedGoogle Scholar
  39. 39.
    Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu G-Q, Palop JJ, Mucke L (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci 109:E2895–E2903. doi: 10.1073/pnas.1121081109 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Saura CA, Parra-Damas A, Enriquez-Barreto L (2015) Gene expression parallels synaptic excitability and plasticity changes in Alzheimer’s disease. Front Cell Neurosci 9:1567. doi: 10.1038/npp.2011.107 CrossRefGoogle Scholar
  41. 41.
    Sawada K, Barr AM, Nakamura M, Arima K, Young CE, Dwork AJ, Falkai P, Phillips AG, Honer WG (2005) Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry 62:263–272. doi: 10.1001/archpsyc.62.3.263 CrossRefPubMedGoogle Scholar
  42. 42.
    Sawada K, Young CE, Barr AM, Longworth K, Takahashi S, Arango V, Mann JJ, Dwork AJ, Falkai P, Phillips AG, Honer WG (2002) Altered immunoreactivity of complexin protein in prefrontal cortex in severe mental illness. Mol Psychiatry 7:484–492. doi: 10.1038/sj.mp.4000978 CrossRefPubMedGoogle Scholar
  43. 43.
    Schneider JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69:2197–2204. doi: 10.1212/01.wnl.0000271090.28148.24 CrossRefPubMedGoogle Scholar
  44. 44.
    Serrano-Pozo A, Qian J, Muzikansky A, Monsell SE, Montine TJ, Frosch MP, Betensky RA, Hyman BT (2016) Thal amyloid stages do not significantly impact the correlation between neuropathological change and cognition in the Alzheimer disease continuum. J Neuropathol Exp Neurol 75:516–526. doi: 10.1093/jnen/nlw026 CrossRefPubMedGoogle Scholar
  45. 45.
    Solodkin A, Veldhuizen SD, Van Hoesen GW (1996) Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer’s disease. J Neurosci 16:3311–3321PubMedGoogle Scholar
  46. 46.
    Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82:756–771. doi: 10.1016/j.neuron.2014.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stargardt A, Swaab DF, Bossers K (2015) The storm before the quiet: neuronal hyperactivity and Abeta in the presymptomatic stages of Alzheimer’s disease. Neurobiol Aging 36:1–11. doi: 10.1016/j.neurobiolaging.2014.08.014 CrossRefPubMedGoogle Scholar
  48. 48.
    Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028. doi: 10.1016/j.neuropsychologia.2009.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Takahashi S, Ujihara H, Huang GZ, Yagyu KI, Sanbo M, Kaba H, Yagi T (1999) Reduced hippocampal LTP in mice lacking a presynaptic protein: complexin II. Eur J Neurosci 11:2359–2366CrossRefPubMedGoogle Scholar
  50. 50.
    Takahashi S, Yamamoto H, Matsuda Z, Ogawa M, Yagyu K, Taniguchi T, Miyata T, Kaba H, Higuchi T, Okutani F (1995) Identification of two highly homologous presynaptic proteins distinctly localized at the dendritic and somatic synapses. FEBS Lett 368:455–460CrossRefPubMedGoogle Scholar
  51. 51.
    Tong LM, Yoon SY, Andrews-Zwilling Y, Yang A, Lin V, Lei H, Huang Y (2016) Enhancing GABA signaling during middle adulthood prevents age-dependent GABAergic interneuron decline and learning and memory deficits in ApoE4 Mice. J Neurosci 36:2316–2322. doi: 10.1523/JNEUROSCI.3815-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, Hegde M, Cornes SB, Henry ML, Nelson AB, Seeley WW, Geschwind MD, Gorno-Tempini ML, Shih T, Kirsch HE, Garcia PA, Miller BL, Mucke L (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol 70:1158–1166. doi: 10.1001/jamaneurol.2013.136 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wakabayashi K, Honer WG, Masliah E (1994) Synapse alterations in the hippocampal-entorhinal formation in Alzheimer’s disease with and without Lewy body disease. Brain Res 667:24–32CrossRefPubMedGoogle Scholar
  54. 54.
    Wang D, Munoz DG (1995) Qualitative and quantitative differences in senile plaque dystrophic neurites of Alzheimer’s disease and normal aged brain. J Neuropathol Exp Neurol 54:548–556CrossRefPubMedGoogle Scholar
  55. 55.
    Winship C, Mare RD (1984) Regression models with ordinal variables. Am Sociol Rev 49:512–525CrossRefGoogle Scholar
  56. 56.
    Yamada M, Saisu H, Ishizuka T, Takahashi H, Abe T (1999) Immunohistochemical distribution of the two isoforms of synaphin/complexin involved in neurotransmitter release: localization at the distinct central nervous system regions and synaptic types. Neurosci 93:7–18CrossRefGoogle Scholar
  57. 57.
    Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8:261–268CrossRefPubMedGoogle Scholar
  58. 58.
    Yu L, Boyle PA, Segawa E, Leurgans S, Schneider JA, Wilson RS, Bennett DA (2015) Residual decline in cognition after adjustment for common neuropathologic conditions. Neuropsychol 29:335–343. doi: 10.1037/neu0000159 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alfredo Ramos-Miguel
    • 1
    • 2
  • Ken Sawada
    • 3
  • Andrea A. Jones
    • 1
    • 2
  • Allen E. Thornton
    • 1
    • 4
  • Alasdair M. Barr
    • 1
    • 5
  • Sue E. Leurgans
    • 6
  • Julie A. Schneider
    • 6
  • David A. Bennett
    • 6
  • William G. Honer
    • 1
    • 2
  1. 1.BC Mental Health and Addictions Research InstituteVancouverCanada
  2. 2.Department of PsychiatryUniversity of British ColumbiaVancouverCanada
  3. 3.Kochi Prefectural Aki General HospitalKochiJapan
  4. 4.Department of PsychologySimon Fraser UniversityBurnabyCanada
  5. 5.Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
  6. 6.Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoUSA

Personalised recommendations