Acta Neuropathologica

, Volume 133, Issue 1, pp 101–119 | Cite as

eEF2K inhibition blocks Aβ42 neurotoxicity by promoting an NRF2 antioxidant response

  • Asad Jan
  • Brandon Jansonius
  • Alberto Delaidelli
  • Syam Prakash Somasekharan
  • Forum Bhanshali
  • Milène Vandal
  • Gian Luca Negri
  • Don Moerman
  • Ian MacKenzie
  • Frédéric Calon
  • Michael R. Hayden
  • Stefan Taubert
  • Poul H. SorensenEmail author
Original Paper


Soluble oligomers of amyloid-β (Aβ) impair synaptic plasticity, perturb neuronal energy homeostasis, and are implicated in Alzheimer’s disease (AD) pathogenesis. Therefore, significant efforts in AD drug discovery research aim to prevent the formation of Aβ oligomers or block their neurotoxicity. The eukaryotic elongation factor-2 kinase (eEF2K) plays a critical role in synaptic plasticity, and couples neurotransmission to local dendritic mRNA translation. Recent evidence indicates that Aβ oligomers activate neuronal eEF2K, suggesting a potential link to Aβ induced synaptic dysfunction. However, a detailed understanding of the role of eEF2K in AD pathogenesis, and therapeutic potential of eEF2K inhibition in AD, remain to be determined. Here, we show that eEF2K activity is increased in postmortem AD patient cortex and hippocampus, and in the hippocampus of aged transgenic AD mice. Furthermore, eEF2K inhibition using pharmacological or genetic approaches prevented the toxic effects of Aβ42 oligomers on neuronal viability and dendrite formation in vitro. We also report that eEF2K inhibition promotes the nuclear factor erythroid 2-related factor (NRF2) antioxidant response in neuronal cells, which was crucial for the beneficial effects of eEF2K inhibition in neurons exposed to Aβ42 oligomers. Accordingly, NRF2 knockdown or overexpression of the NRF2 inhibitor, Kelch-Like ECH-Associated Protein-1 (Keap1), significantly attenuated the neuroprotection associated with eEF2K inhibition. Finally, genetic deletion of the eEF2K ortholog efk-1 reduced oxidative stress, and improved chemotaxis and serotonin sensitivity in C. elegans expressing human Aβ42 in neurons. Taken together, these findings highlight the potential utility of eEF2K inhibition to reduce Aβ-mediated oxidative stress in AD.


eEF2K Alzheimer’s disease Aβ oligomers mRNA translation Oxidative stress NRF2 



This work was supported by the Ride2Survive Brain Cancer Impact Grant of the Canadian Cancer Society and Brain Canada (grant #703205), and funds from the BC Cancer Foundation, to PHS, a postdoctoral fellowship from the Canadian Institutes of Health Research to AJ, and a Tier 2 Canadian Research Chair in Transcriptional Regulatory Networks to ST. The authors would like to thank Amy Li, Haifeng Zhang, Jordan Cran, Arash Samiei, and David Ko for their assistance.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

401_2016_1634_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2243 kb)


  1. 1.
    Alonso-Nanclares L, Merino-Serrais P, Gonzalez S, DeFelipe J (2013) Synaptic changes in the dentate gyrus of APP/PS1 transgenic mice revealed by electron microscopy. J Neuropathol Exp Neurol 72:386–395. doi: 10.1097/NEN.0b013e31828d41ec CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baxter PS, Bell KF, Hasel P, Kaindl AM, Fricker M, Thomson D et al (2015) Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nat Commun 6:6761. doi: 10.1038/ncomms7761 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bender CL, Yang Q, Sun L, Liu SJ (2016) NH125 reduces the level of CPEB3, an RNA binding protein, to promote synaptic GluA2 expression. Neuropharmacology 101:531–537. doi: 10.1016/j.neuropharm.2015.03.017 CrossRefPubMedGoogle Scholar
  4. 4.
    Boyce M, Py BF, Ryazanov AG, Minden JS, Long K, Ma D et al (2008) A pharmacoproteomic approach implicates eukaryotic elongation factor 2 kinase in ER stress-induced cell death. Cell Death Differ 15:589–599. doi: 10.1038/sj.cdd.4402296 CrossRefPubMedGoogle Scholar
  5. 5.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85:705–717. doi: 10.1016/j.bcp.2012.11.016 CrossRefPubMedGoogle Scholar
  7. 7.
    Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B et al (2012) Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 109:8740–8745. doi: 10.1073/pnas.1206171109 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carrera I, Etcheverria I, Li Y, Fernandez-Novoa L, Lombardi V, Vigo C et al (2013) Immunocytochemical characterization of Alzheimer disease hallmarks in APP/PS1 transgenic mice treated with a new anti-amyloid-beta vaccine. Biomed Res Int 2013:709145. doi: 10.1155/2013/709145 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen Z, Gopalakrishnan SM, Bui MH, Soni NB, Warrior U, Johnson EF et al (2011) 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) induces phosphorylation of eukaryotic elongation factor-2 (eEF2): a cautionary note on the anticancer mechanism of an eEF2 kinase inhibitor. J Biol Chem 286:43951–43958. doi: 10.1074/jbc.M111.301291 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chu HP, Liao Y, Novak JS, Hu Z, Merkin JJ, Shymkiv Y et al (2014) Germline quality control: eEF2K stands guard to eliminate defective oocytes. Dev Cell 28:561–572. doi: 10.1016/j.devcel.2014.01.027 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chuang TT (2010) Neurogenesis in mouse models of Alzheimer’s disease. Biochim Biophys Acta 1802:872–880. doi: 10.1016/j.bbadis.2009.12.008 CrossRefPubMedGoogle Scholar
  12. 12.
    De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615. doi: 10.1016/j.cell.2015.12.056 CrossRefPubMedGoogle Scholar
  13. 13.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112. doi: 10.1038/nrm2101 CrossRefPubMedGoogle Scholar
  14. 14.
    Habas A, Hahn J, Wang X, Margeta M (2013) Neuronal activity regulates astrocytic Nrf2 signaling. Proc Natl Acad Sci USA 110:18291–18296. doi: 10.1073/pnas.1208764110 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hamilton A, Vasefi M, Vander Tuin C, McQuaid RJ, Anisman H, Ferguson SS (2016) Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an alzheimer disease mouse model. Cell Rep 15:1859–1865. doi: 10.1016/j.celrep.2016.04.077 CrossRefPubMedGoogle Scholar
  16. 16.
    Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N (2002) MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J Cell Biol 158:541–549. doi: 10.1083/jcb.200110134 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Harder B, Jiang T, Wu T, Tao S, de la Vega MR, Tian W et al (2015) Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans 43:680–686. doi: 10.1042/BST20150020 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Heise C, Gardoni F, Culotta L, di Luca M, Verpelli C, Sala C (2014) Elongation factor-2 phosphorylation in dendrites and the regulation of dendritic mRNA translation in neurons. Front Cell Neurosci 8:35. doi: 10.3389/fncel.2014.00035 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hobert O (2003) Behavioral plasticity in C. elegans: paradigms, circuits, genes. J Neurobiol 54:203–223. doi: 10.1002/neu.10168 CrossRefPubMedGoogle Scholar
  20. 20.
    Jan A, Adolfsson O, Allaman I, Buccarello AL, Magistretti PJ, Pfeifer A et al (2010) A{beta}42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete A{beta}42 species. J Biol Chem. doi: 10.1074/jbc.M110.172411 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Jan A, Hartley DM, Lashuel HA (2010) Preparation and characterization of toxic A[beta] aggregates for structural and functional studies in Alzheimer’s disease research. Nat Protocols 5:1186–1209.
  22. 22.
    Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13:159–170CrossRefPubMedGoogle Scholar
  23. 23.
    Johnson DA, Johnson JA (2015) Nrf2–a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 88:253–267. doi: 10.1016/j.freeradbiomed.2015.07.147 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Keith D, El-Husseini A (2008) Excitation control: balancing PSD-95 function at the synapse. Front Mol Neurosci 1:4. doi: 10.3389/neuro.02.004.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kenney JW, Moore CE, Wang X, Proud CG (2014) Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Adv Biol Regul 55:15–27. doi: 10.1016/j.jbior.2014.04.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Kessels HW, Nabavi S, Malinow R (2013) Metabotropic NMDA receptor function is required for beta-amyloid-induced synaptic depression. Proc Natl Acad Sci USA 110:4033–4038. doi: 10.1073/pnas.1219605110 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779. doi: 10.1038/nature05290 CrossRefPubMedGoogle Scholar
  29. 29.
    Leprivier G, Remke M, Rotblat B, Dubuc A, Mateo AR, Kool M et al (2013) The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 153:1064–1079. doi: 10.1016/j.cell.2013.04.055 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    LeVine H 3rd, Walker LC (2016) What amyloid ligands can tell us about molecular polymorphism and disease. Neurobiol Aging 42:205–212. doi: 10.1016/j.neurobiolaging.2016.03.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62:788–801. doi: 10.1016/j.neuron.2009.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li X, Alafuzoff I, Soininen H, Winblad B, Pei JJ (2005) Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J 272:4211–4220. doi: 10.1111/j.1742-4658.2005.04833.x CrossRefPubMedGoogle Scholar
  33. 33.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. doi: 10.1038/nature05292 CrossRefPubMedGoogle Scholar
  34. 34.
    Liu R, Proud CG (2016) Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol Sin 37:285–294. doi: 10.1038/aps.2015.123 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454. doi: 10.1038/nature13163 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B, Marambaud P et al (2014) Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid beta. J Neurosci 34:12230–12238. doi: 10.1523/JNEUROSCI.1694-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Manzoni C, Colombo L, Bigini P, Diana V, Cagnotto A, Messa M et al (2011) The molecular assembly of amyloid abeta controls its neurotoxicity and binding to cellular proteins. PLoS One 6:e24909. doi: 10.1371/journal.pone.0024909 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Margie O, Palmer C, Chin-Sang I (2013) C. elegans chemotaxis assay. J Vis Exp e50069. doi: 10.3791/50069
  39. 39.
    Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. doi: 10.1016/j.neuron.2011.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mitsuishi Y, Motohashi H, Yamamoto M (2012) The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2:200. doi: 10.3389/fonc.2012.00200 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al. (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421. doi:S0896627303004343 [pii]Google Scholar
  42. 42.
    Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85. doi: 10.1097/nen.0b013e31802d6da9 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P et al (2005) Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. JNeurosci 25:11061–11070CrossRefGoogle Scholar
  44. 44.
    Rotblat B, Southwell AL, Ehrnhoefer DE, Skotte NH, Metzler M, Franciosi S et al (2014) HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. Proc Natl Acad Sci USA 111:3032–3037. doi: 10.1073/pnas.1314421111 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ryazanov AG (2002) Elongation factor-2 kinase and its newly discovered relatives. FEBS Lett 514:26–29. doi: 10.1016/S0014-5793(02)02299-8 CrossRefPubMedGoogle Scholar
  46. 46.
    Sakamoto S, Ishii K, Sasaki M, Hosaka K, Mori T, Matsui M et al (2002) Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. J Neurol Sci 200:27–32. doi: 10.1016/S0022-510X(02)00114-4 CrossRefPubMedGoogle Scholar
  47. 47.
    Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118:460–474. doi: 10.1111/j.1471-4159.2011.07331.x CrossRefPubMedGoogle Scholar
  48. 48.
    Saraiva LM, Seixas da Silva GS, Galina A, da-Silva WS, da-Silva WS, Klein WL, Ferreira ST et al (2010) Amyloid-beta triggers the release of neuronal hexokinase 1 from mitochondria. PLoS One 5:e15230. doi: 10.1371/journal.pone.0015230 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Savonenko A, Xu GM, Melnikova T, Morton JL, Gonzales V, Wong MP et al (2005) Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 18:602–617. doi: 10.1016/j.nbd.2004.10.022 CrossRefPubMedGoogle Scholar
  50. 50.
    Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631. doi: 10.1016/S0896-6273(00)81199-X CrossRefPubMedGoogle Scholar
  51. 51.
    Scheetz AJ, Nairn AC, Constantine-Paton M (2000) NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosci 3:211–216. doi: 10.1038/72915 CrossRefPubMedGoogle Scholar
  52. 52.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  53. 53.
    Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113. doi: 10.1016/j.bbr.2008.02.016 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Selkoe DJ (2013) The therapeutics of Alzheimer’s disease: where we stand and where we are heading. Ann Neurol 74:328–336. doi: 10.1002/ana.24001 CrossRefPubMedGoogle Scholar
  55. 55.
    Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584CrossRefPubMedGoogle Scholar
  56. 56.
    Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189. doi: 10.1101/cshperspect.a006189 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sutton MA, Taylor AM, Ito HT, Pham A, Schuman EM (2007) Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 55:648–661. doi: 10.1016/j.neuron.2007.07.030 CrossRefPubMedGoogle Scholar
  58. 58.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefPubMedGoogle Scholar
  59. 59.
    Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M (2010) Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 186:60–67. doi: 10.1016/j.jneumeth.2009.11.004 CrossRefPubMedGoogle Scholar
  60. 60.
    Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H et al (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 79:887–902. doi: 10.1016/j.neuron.2013.06.036 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Vandal M, White PJ, Tournissac M, Tremblay C, St-Amour I, Drouin-Ouellet J et al (2016) Impaired thermoregulation and beneficial effects of thermoneutrality in the 3xTg-AD model of Alzheimer’s disease. Neurobiol Aging 43:47–57. doi: 10.1016/j.neurobiolaging.2016.03.024 CrossRefPubMedGoogle Scholar
  62. 62.
    Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581. doi: 10.1523/JNEUROSCI.4099-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A et al (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. JBiolChem 274:25945–25952Google Scholar
  64. 64.
    Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B et al (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140. doi: 10.1016/S0006-8993(01)03058-X CrossRefPubMedGoogle Scholar
  65. 65.
    Wilcock DM, Gordon MN, Morgan D (2006) Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nat Protoc 1:1591–1595. doi: 10.1038/nprot.2006.277 CrossRefPubMedGoogle Scholar
  66. 66.
    Wisniewski T, Goni F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85:1162–1176. doi: 10.1016/j.neuron.2014.12.064 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL et al (2006) Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 26:13102–13113. doi: 10.1523/JNEUROSCI.3448-06.2006 CrossRefPubMedGoogle Scholar
  68. 68.
    Xie H, Hou S, Jiang J, Sekutowicz M, Kelly J, Bacskai BJ (2013) Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc Natl Acad Sci USA 110:7904–7909. doi: 10.1073/pnas.1217938110 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Asad Jan
    • 1
    • 2
  • Brandon Jansonius
    • 2
  • Alberto Delaidelli
    • 1
    • 2
  • Syam Prakash Somasekharan
    • 2
  • Forum Bhanshali
    • 3
  • Milène Vandal
    • 4
  • Gian Luca Negri
    • 2
  • Don Moerman
    • 5
  • Ian MacKenzie
    • 1
  • Frédéric Calon
    • 4
  • Michael R. Hayden
    • 3
  • Stefan Taubert
    • 3
  • Poul H. Sorensen
    • 1
    • 2
    Email author
  1. 1.Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
  2. 2.British Columbia Cancer Research CentreVancouverCanada
  3. 3.Department of Medical Genetics, Child and Family Research InstituteUniversity of British Columbia, Centre for Molecular Medicine and TherapeuticsVancouverCanada
  4. 4.Faculté de PharmacieUniversité LavalQuebecCanada
  5. 5.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations