Acta Neuropathologica

, Volume 132, Issue 3, pp 475–478 | Cite as

Kyphoscoliosis peptidase (KY) mutation causes a novel congenital myopathy with core targetoid defects

  • Rachel Straussberg
  • Gudrun Schottmann
  • Menachem Sadeh
  • Esther Gill
  • Franziska Seifert
  • Ayelet Halevy
  • Kaiyal Qassem
  • John Rendu
  • Peter F. M. van der Ven
  • Werner Stenzel
  • Markus Schuelke
Correspondence

Notes

Acknowledgments

The authors thank the patients and their family for participating in the study. We gratefully acknowledge the expert technical support of Angelika Zwirner and Corinna Preuße. The study was supported by the Deutsche Forschungsgemeinschaft (SFB665 TP C4 and Exc 257) to MS.

Supplementary material

401_2016_1602_MOESM1_ESM.pdf (503 kb)
Supplementary material 1 (PDF 502 kb)

References

  1. 1.
    Baker J, Riley G, Romero MR, Haynes AR, Hilton H, Simon M, Hancock J, Tateossian H, Ripoll VM, Blanco G (2010) Identification of a Z-band associated protein complex involving KY, FLNC and IGFN1. Exp Cell Res 316:1856–1870. doi:10.1016/j.yexcr.2010.02.027 CrossRefPubMedGoogle Scholar
  2. 2.
    Beatham J, Romero R, Townsend SKM, Hacker T, van der Ven PFM, Blanco G (2004) Filamin C interacts with the muscular dystrophy KY protein and is abnormally distributed in mouse KY deficient muscle fibres. Hum Mol Genet 13:2863–2874. doi:10.1093/hmg/ddh308 CrossRefPubMedGoogle Scholar
  3. 3.
    Blanco G, Coulton GR, Biggin A, Grainge C, Moss J, Barrett M, Berquin A, Maréchal G, Skynner M, van Mier P, Nikitopoulou A, Kraus M, Ponting CP, Mason RM, Brown SDM (2001) The kyphoscoliosis (ky) mouse is deficient in hypertrophic responses and is caused by a mutation in a novel muscle-specific protein. Hum Mol Genet 10:9–16. doi:10.1093/hmg/10.1.9 CrossRefPubMedGoogle Scholar
  4. 4.
    Bridges LR, Coulton GR, Howard G, Moss J, Mason RM (1992) The neuromuscular basis of hereditary kyphoscoliosis in the mouse. Muscle Nerve 15:172–179. doi:10.1002/mus.880150208 CrossRefPubMedGoogle Scholar
  5. 5.
    Duff RM, Tay V, Hackman P, Ravenscroft G, McLean C, Kennedy P, Steinbach A, Schöffler W, van der Ven PFM, Fürst DO, Song J, Djinović-Carugo K, Penttilä S, Raheem O, Reardon K, Malandrini A, Gambelli S, Villanova M, Nowak KJ, Williams DR, Landers JE, Brown RH, Udd B, Laing NG (2011) Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy. Am J Hum Genet 88:729–740. doi:10.1016/j.ajhg.2011.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Guergueltcheva V, Peeters K, Baets J, Groote CC, Martin JJ, Suls A, Vriendt ED, Mihaylova V, Chamova T, Almeida-Souza L, Ydens E, Tzekov C, Hadjidekov G, Gospodinova M, Storm K, Reyniers E, Bichev S, van der Ven PFM, Fürst DO, Mitev V, Lochmüller H, Timmerman V, Tournev I, Jonghe PD, Jordanova A (2011) Distal myopathy with upper limb predominance caused by filamin C haploinsufficiency. Neurology 77:2105–2114. doi:10.1212/WNL.0b013e31823dc51e CrossRefPubMedGoogle Scholar
  7. 7.
    Ravenscroft G, Laing NG, Bönnemann CG (2015) Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. Brain 138:246–268. doi:10.1093/brain/awu368 CrossRefPubMedGoogle Scholar
  8. 8.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee on behalf of the ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423. doi:10.1038/gim.2015.30 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schröder R, Schoser B (2009) Myofibrillar myopathies: a clinical and myopathological guide. Brain Pathol 19:483–492. doi:10.1111/j.1750-3639.2009.00289.x CrossRefPubMedGoogle Scholar
  10. 10.
    Vattemi G, Neri M, Piffer S, Vicart P, Gualandi F, Marini M, Guglielmi V, Filosto M, Tonin P, Ferlini A, Tomelleri G (2011) Clinical, morphological and genetic studies in a cohort of 21 patients with myofibrillar myopathy. Acta Myol 30:121–126PubMedPubMedCentralGoogle Scholar
  11. 11.
    van der Ven PF, Obermann WM, Lemke B, Gautel M, Weber K, Fürst DO (2000) Characterization of muscle filamin isoforms suggests a possible role of gamma-filamin/ABP-L in sarcomeric Z-disc formation. Cell Motil Cytoskeleton 45:149–162. doi:10.1002/(SICI)1097-0169(200002)45:2<149:AID-CM6>3.0.CO;2-G CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou Z, Cornelius CP, Eichner M, Bornemann A (2006) Reinnervation-induced alterations in rat skeletal muscle. Neurobiol Dis 23:595–602. doi:10.1016/j.nbd.2006.05.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rachel Straussberg
    • 1
  • Gudrun Schottmann
    • 2
  • Menachem Sadeh
    • 3
  • Esther Gill
    • 2
  • Franziska Seifert
    • 2
  • Ayelet Halevy
    • 1
  • Kaiyal Qassem
    • 1
  • John Rendu
    • 4
  • Peter F. M. van der Ven
    • 5
  • Werner Stenzel
    • 6
  • Markus Schuelke
    • 2
    • 7
  1. 1.Neurology Institute, Schneider Children’s Medical Center of Israel and Sackler School of MedicineTel Aviv UniversityPetah TikvaIsrael
  2. 2.Department of Neuropediatrics and NeuroCure Clinical Research CenterCharité-Universitätsmedizin BerlinBerlinGermany
  3. 3.Department of NeurologyWolfson Medical CenterHolonIsrael
  4. 4.Biochimie Génétique et Moléculaire, Département de Biochimie Toxicologie et Pharmacologie Centre Hospitalier Universitaire Grenoble AlpesUniversité Grenoble AlpesGrenobleFrance
  5. 5.Department of Molecular Cell Biology, Institute for Cell BiologyUniversity of BonnBonnGermany
  6. 6.Institute of NeuropathologyCharité-Universitätsmedizin BerlinBerlinGermany
  7. 7.Department of NeuropediatricsCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations