Advertisement

Acta Neuropathologica

, Volume 132, Issue 2, pp 277–288 | Cite as

Neuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsy

  • Elisa Volmering
  • Pitt Niehusmann
  • Viktoriya Peeva
  • Alexander Grote
  • Gábor Zsurka
  • Janine Altmüller
  • Peter Nürnberg
  • Albert J. Becker
  • Susanne Schoch
  • Christian E. Elger
  • Wolfram S. KunzEmail author
Original Paper

Abstract

Accumulation of mitochondrial DNA (mtDNA) deletions has been proposed to be responsible for the presence of respiratory-deficient neurons in several CNS diseases. Deletions are thought to originate from double-strand breaks due to attack of reactive oxygen species (ROS) of putative inflammatory origin. In epileptogenesis, emerging evidence points to chronic inflammation as an important feature. Here we aimed to analyze the potential association of inflammation and mtDNA deletions in the hippocampal tissue of patients with mesial temporal lobe epilepsy (mTLE) and hippocampal sclerosis (HS). Hippocampal and parahippocampal tissue samples from 74 patients with drug-refractory mTLE served for mtDNA analysis by multiplex PCR as well as long-range PCR, single-molecule PCR and ultra-deep sequencing of mtDNA in selected samples. Patients were sub-classified according to neuropathological findings. Semi-quantitative assessment of neuronal cell loss was performed in the hippocampal regions CA1–CA4. Inflammatory infiltrates were quantified by cell counts in the CA1, CA3 and CA4 regions from well preserved hippocampal samples (n = 33). Samples with HS showed a significantly increased frequency of a 7436-bp mtDNA deletion (p < 0.0001) and a higher proportion of somatic G>T transversions compared to mTLE patients with different histopathology. Interestingly, the number of T-lymphocytes in the hippocampal CA1, CA3 and CA4 regions was, similar to the 7436-bp mtDNA deletion, significantly increased in samples with HS compared to other subgroups. Our findings show a coincidence of HS, increased somatic G>T transversions, the presence of a specific mtDNA deletion, and increased inflammatory infiltrates. These results support the hypothesis that chronic inflammation leads to mitochondrial dysfunction by ROS-mediated mtDNA mutagenesis which promotes epileptogenesis and neuronal cell loss in patients with mTLE and HS.

Keywords

Temporal lobe epilepsy Mitochondria mtDNA deletions Hippocampal sclerosis neuropathology Inflammation 

Notes

Acknowledgments

The excellent technical assistance of Susanne Beyer is gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft (KU911/21-1 to W.S.K., ZS99/3-1 to G. Z., SFB1089 to A. J. B., S. S.), the German Ministry of Research and Education (BMBF, 01GQ0806 to S. S.), the European Union’s Seventh Framework Programme (FP7/2007-2013 under Grant Agreement No 602102 (EPITARGET) to A. J. B., S. S.), and local funding (BONFOR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

401_2016_1561_MOESM1_ESM.doc (4.7 mb)
Supplementary material 1 (DOC 4853 kb)

References

  1. 1.
    Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M, Larsson NG, Gyllensten U (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7:e1002028CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baris OR, Ederer S, Neuhaus JF, von Kleist-Retzow JC, Wunderlich CM, Pal M, Wunderlich FT, Peeva V, Zsurka G, Kunz WS, Hickethier T, Bunck AC, Stöckigt F, Schrickel JW, Wiesner RJ (2015) Mosaic deficiency in mitochondrial oxidative metabolism promotes cardiac arrhythmia during aging. Cell Metab 21:667–677CrossRefPubMedGoogle Scholar
  3. 3.
    Bien CG, Vincent A, Barnett MH, Becker AJ, Blümcke I, Graus F, Jellinger KA, Reuss DE, Ribalta T, Schlegel J, Sutton I, Lassmann H, Bauer J (2012) Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135:1622–1638CrossRefPubMedGoogle Scholar
  4. 4.
    Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshé SL, Oz B, Özkara Ç, Perucca E, Sisodiya S, Wiebe S, Spreafico R (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia 54:1315–1329CrossRefPubMedGoogle Scholar
  5. 5.
    Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng KC, Cahill DS, Kasais H, Nishimuras S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem 267:166–172PubMedGoogle Scholar
  8. 8.
    Chinnery PF, Samuels DC (1999) Relaxed replication of mtDNA: a model with implications for the expression of disease. Am J Hum Genet 64:1158–1165CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Claude J, Linnartz-Gerlach B, Kudin AP, Kunz WS, Neumann H (2013) Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J Neurosci 33:18270–18276CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948CrossRefPubMedGoogle Scholar
  11. 11.
    Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT (2002) Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res 30:4626–4633CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123CrossRefPubMedGoogle Scholar
  13. 13.
    Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68:802–806CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Folbergrová J, Kunz WS (2012) Mitochondrial dysfunction in epilepsy. Mitochondrion 12:35–40CrossRefPubMedGoogle Scholar
  15. 15.
    Ghosh R, Mitchell DL (1999) Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res 27:3213–3218CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Giulivi C, Boveris A, Cadenas E (1995) Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 316:909–916CrossRefPubMedGoogle Scholar
  17. 17.
    Guo X, Popadin KY, Markuzon N, Orlov YL, Kraytsberg Y, Krishnan KJ, Zsurka G, Turnbull DM, Kunz WS, Khrapko K (2010) Repeats, longevity and the sources of mtDNA deletions: evidence from ‘deletional spectra’. Trends Genet 26:340–343CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696CrossRefPubMedGoogle Scholar
  19. 19.
    Kennedy SR, Salk JJ, Schmitt MW, Loeb LA (2013) Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9:e1003794CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kovac S, Domijan AM, Walker MC, Abramov AY (2014) Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 5:e1442CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kowald A, Dawson M, Kirkwood TB (2014) Mitochondrial mutations and ageing: can mitochondrial deletion mutants accumulate via a size based replication advantage? J Theor Biol 340:111–118CrossRefPubMedGoogle Scholar
  22. 22.
    Kral T, Clusmann H, Urbach J, Schramm J, Elger CE, Kurthen M, Grunwald T (2002) Preoperative evaluation for epilepsy surgery (Bonn Algorithm). Zentralbl Neurochir 63:106–110CrossRefPubMedGoogle Scholar
  23. 23.
    Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520CrossRefPubMedGoogle Scholar
  24. 24.
    Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279CrossRefPubMedGoogle Scholar
  25. 25.
    Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279:4127–4135CrossRefPubMedGoogle Scholar
  26. 26.
    Kudin AP, Zsurka G, Elger CE, Kunz WS (2009) Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 218:326–332CrossRefPubMedGoogle Scholar
  27. 27.
    Kunz WS, Kudin AP, Vielhaber S, Blümcke I, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773CrossRefPubMedGoogle Scholar
  28. 28.
    Kunz WS (2002) The role of mitochondria in epileptogenesis. Curr Opin Neurol 15:179–184CrossRefPubMedGoogle Scholar
  29. 29.
    Lee HC, Lu CY, Fahn HJ, Wei YH (1998) Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296CrossRefPubMedGoogle Scholar
  30. 30.
    Müller-Höcker J, Schäfer S, Krebs S, Blum H, Zsurka G, Kunz WS, Prokisch H, Seibel P, Jung A (2014) Oxyphil cell metaplasia in the parathyroids is characterized by somatic mitochondrial DNA mutations in NADH dehydrogenase genes and cytochrome c oxidase activity-impairing genes. Am J Pathol 184:2922–2935CrossRefPubMedGoogle Scholar
  31. 31.
    Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N (2014) Epileptic focus and alteration of metabolism. Int Rev Neurobiol 114:209–243CrossRefPubMedGoogle Scholar
  32. 32.
    Plum GE, Grollman AP, Johnson F, Breslauer KJ (1992) Influence of an exocyclic guanine adduct on the thermal stability, conformation, and melting thermodynamics of a DNA duplex. Biochemistry 31:12096–12102CrossRefPubMedGoogle Scholar
  33. 33.
    Ravizza T, Balosso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497:223–230CrossRefPubMedGoogle Scholar
  34. 34.
    Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Talhaoui I, Shafirovich V, Liu Z, Saint-Pierre C, Akishev Z, Matkarimov BT, Gasparutto D, Geacintov NE, Saparbaev M (2015) Oxidatively generated guanine(C8)-thymine(N3) intrastrand cross-links in double-stranded DNA are repaired by base excision repair pathways. J Biol Chem 290:14610–14617CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491CrossRefPubMedGoogle Scholar
  37. 37.
    Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Téllez-Zenteno JF, Hernández-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012:630853PubMedGoogle Scholar
  39. 39.
    Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101CrossRefPubMedGoogle Scholar
  40. 40.
    Yang T, Zhou D, Stefan H (2010) Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci 296:1–6CrossRefPubMedGoogle Scholar
  41. 41.
    Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131:211–234CrossRefPubMedGoogle Scholar
  42. 42.
    Waldbaum S, Patel M (2010) Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42:449–455CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632CrossRefPubMedGoogle Scholar
  44. 44.
    Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM (2011) Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 31:4037–4050CrossRefPubMedGoogle Scholar
  45. 45.
    Zsurka G, Baron M, Stewart JD, Kornblum C, Bös M, Sassen R, Taylor RW, Elger CE, Chinnery PF, Kunz WS (2008) Clonally expanded mitochondrial DNA mutations in epileptic individuals with mutated DNA polymerase gamma. J Neuropathol Exp Neurol 67:857–866CrossRefPubMedGoogle Scholar
  46. 46.
    Zsurka G, Kunz WS (2010) Mitochondrial dysfunction in neurological disorders with epileptic phenotypes. J Bioenerg Biomembr 42:443–448CrossRefPubMedGoogle Scholar
  47. 47.
    Zsurka G, Kunz WS (2015) Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 14:956–966CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elisa Volmering
    • 1
  • Pitt Niehusmann
    • 1
    • 2
  • Viktoriya Peeva
    • 3
  • Alexander Grote
    • 4
  • Gábor Zsurka
    • 3
  • Janine Altmüller
    • 5
    • 6
  • Peter Nürnberg
    • 5
  • Albert J. Becker
    • 1
    • 7
  • Susanne Schoch
    • 1
    • 7
  • Christian E. Elger
    • 3
  • Wolfram S. Kunz
    • 3
    Email author
  1. 1.Department of NeuropathologyUniversity of Bonn Medical CenterBonnGermany
  2. 2.Department of Neuro-/PathologyOslo University HospitalOsloNorway
  3. 3.Division of Neurochemistry, Department of EpileptologyUniversity Bonn Medical CenterBonnGermany
  4. 4.Department of NeurosurgeryUniversity of Bonn Medical CenterBonnGermany
  5. 5.Cologne Center for GenomicsUniversity of CologneCologneGermany
  6. 6.Institute of Human GeneticsUniversity of CologneCologneGermany
  7. 7.Translational Epilepsy Research SectionUniversity of Bonn Medical CenterBonnGermany

Personalised recommendations