Acta Neuropathologica

, Volume 131, Issue 3, pp 365–378 | Cite as

Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors

  • Susan Brandenburg
  • Annett Müller
  • Kati Turkowski
  • Yordan T. Radev
  • Sergej Rot
  • Christin Schmidt
  • Alexander D. Bungert
  • Güliz Acker
  • Anne Schorr
  • Andreas Hippe
  • Kelly Miller
  • Frank L. Heppner
  • Bernhard Homey
  • Peter Vajkoczy
Original Paper


Myeloid cells are an essential part of the glioblastoma microenvironment. However, in brain tumors the function of these immune cells is not sufficiently clarified. In our study, we investigated differential pro-angiogenic activities of resident microglia and peripheral macrophages and their impact on glioma vascularization and progression. Our data demonstrate stable accumulation of microglia/macrophages during tumor growth. These cells often interact with tumor blood vessels correlating with vascular remodeling. Here, we identified resident microglia as well as peripheral macrophages as part of the perivascular niche, primarily contacting endothelial cells. We found overexpression of a variety of pro-angiogenic molecules within freshly isolated microglia/macrophages from glioma. CXCL2, until now a poorly described chemokine, was strongly up-regulated and showed better angiogenic activity than VEGF in vitro. Blocking the CXCL2-CXCR2 signaling pathway resulted in considerably diminished glioma sizes. Additionally, the importance of microglia/macrophages in tumor angiogenesis was confirmed by depletion of these cells in vivo. Vessel density decreased by 50 % leading to significantly smaller tumor volumes. Remarkably, selective reduction of resident microglia affected tumoral vessel count comparable to ablation of the whole myeloid cell fraction. These results provide evidence that resident microglia are the crucial modulatory cell population playing a central role in regulation of vascular homeostasis and angiogenesis in brain tumors. Thus, resident microglia represent an alternative source of pro-angiogenic growth factors and cytokines.


Glioblastoma multiforme Tumor angiogenesis Microglia/macrophages Angiogenic molecules CXCL2 



The authors thank Dr. Jana Glumm and Martin Pohland for the kind supply of the C57BL6/J-TgN(beta-act-EGFP) mice. We especially thank Thomas Broggini for providing the bEnd.4 cell line. Additionally, we thank Susanne Müller for her assistance in MRI measurement and analyses. This work was supported by the German Research Foundation (DFG, SPP1190) and SFB TRR43. A. Müller was funded by a doctoral scholarship from Sonnenfeld foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


This work was supported by the German Research Foundation (DFG, SPP1190) and SFB TRR43. A. Müller was funded by a doctoral scholarship from Sonnenfeld foundation.

Supplementary material

401_2015_1529_MOESM1_ESM.tif (590 kb)
Supplementary material 1 (TIFF 589 kb)
401_2015_1529_MOESM2_ESM.tif (3.5 mb)
Supplementary material 2 (TIFF 3604 kb)
401_2015_1529_MOESM3_ESM.tif (169 kb)
Supplementary material 3 (TIFF 168 kb)
401_2015_1529_MOESM4_ESM.docx (14 kb)
Supplementary material 4 (DOCX 13 kb)


  1. 1.
    Acker T, Plate KH (2003) Role of hypoxia in tumor angiogenesis-molecular and cellular angiogenic crosstalk. Cell Tissue Res 314:145–155CrossRefPubMedGoogle Scholar
  2. 2.
    Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD (2009) Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18:1061–1083CrossRefPubMedGoogle Scholar
  3. 3.
    Badie B, Schartner J (2001) Role of microglia in glioma biology. Microsc Res Tech 54:106–113CrossRefPubMedGoogle Scholar
  4. 4.
    Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111CrossRefPubMedGoogle Scholar
  5. 5.
    Batchelor TT, Sorensen AG, di TE, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95Google Scholar
  6. 6.
    Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14:1651–1658CrossRefPubMedGoogle Scholar
  7. 7.
    Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8PubMedGoogle Scholar
  8. 8.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M (2003) Analysis of the role of chemokines in angiogenesis. J Immunol Methods 273:83–101CrossRefPubMedGoogle Scholar
  10. 10.
    Bessis A, Bechade C, Bernard D, Roumier A (2007) Microglial control of neuronal death and synaptic properties. Glia 55:233–238CrossRefPubMedGoogle Scholar
  11. 11.
    Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Brockington A, Lewis C, Wharton S, Shaw PJ (2004) Vascular endothelial growth factor and the nervous system. Neuropathol Appl Neurobiol 30:427–446CrossRefPubMedGoogle Scholar
  13. 13.
    Bruyere C, Mijatovic T, Lonez C, Spiegl-Kreinecker S, Berger W, Kast RE, Ruysschaert JM, Kiss R, Lefranc F (2011) Temozolomide-induced modification of the CXC chemokine network in experimental gliomas. Int J Oncol 38:1453–1464PubMedGoogle Scholar
  14. 14.
    Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE (2002) Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 196:204–212CrossRefPubMedGoogle Scholar
  15. 15.
    Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427CrossRefPubMedGoogle Scholar
  16. 16.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309CrossRefPubMedGoogle Scholar
  17. 17.
    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59:1169–1180CrossRefPubMedGoogle Scholar
  18. 18.
    Cloughesy TF, Wen PY, Robins HI, Chang SM, Groves MD, Fink KL, Junck L, Schiff D, Abrey L, Gilbert MR, Lieberman F, Kuhn J, DeAngelis LM, Mehta M, Raizer JJ, Yung WK, Aldape K, Wright J, Lamborn KR, Prados MD (2006) Phase II trial of tipifarnib in patients with recurrent malignant glioma either receiving or not receiving enzyme-inducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J Clin Oncol 24:3651–3656CrossRefPubMedGoogle Scholar
  19. 19.
    Gerber PA, Hippe A, Buhren BA, Muller A, Homey B (2009) Chemokines in tumor-associated angiogenesis. Biol Chem 390:1213–1223CrossRefPubMedGoogle Scholar
  20. 20.
    Gerstner ER, Batchelor TT (2012) Antiangiogenic therapy for glioblastoma. Cancer J 18:45–50PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Hamada I, Kato M, Yamasaki T, Iwabuchi K, Watanabe T, Yamada T, Itoyama S, Ito H, Okada K (2002) Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res 22:4281–4284PubMedGoogle Scholar
  22. 22.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364CrossRefPubMedGoogle Scholar
  23. 23.
    Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394CrossRefPubMedGoogle Scholar
  24. 24.
    Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Henriquet C, Gougat C, Combes A, Lazennec G, Mathieu M (2007) Differential regulation of RANTES and IL-8 expression in lung adenocarcinoma cells. Lung Cancer 56:167–174PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152CrossRefPubMedGoogle Scholar
  27. 27.
    Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T, Fukumura D, Jain RK (2011) C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci USA 108:302–307PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Hong TM, Teng LJ, Shun CT, Peng MC, Tsai JC (2009) Induced interleukin-8 expression in gliomas by tumor-associated macrophages. J Neurooncol 93:289–301CrossRefPubMedGoogle Scholar
  29. 29.
    Jablonska J, Wu CF, Andzinski L, Leschner S, Weiss S (2014) CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-beta. Int J Cancer 134:1346–1358CrossRefPubMedGoogle Scholar
  30. 30.
    Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192:150–158CrossRefPubMedGoogle Scholar
  31. 31.
    Loges S, Schmidt T, Carmeliet P (2010) Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer 1:12–25PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H (2005) Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64:754–762CrossRefPubMedGoogle Scholar
  33. 33.
    Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kalin R, van Rooijen N, Holmbeck K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass R, Kettenmann H (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA 106:12530–12535PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Muller A, Brandenburg S, Turkowski K, Muller S, Vajkoczy P (2014) Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int J Cancer 137:278–288CrossRefPubMedGoogle Scholar
  36. 36.
    Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631CrossRefPubMedGoogle Scholar
  37. 37.
    Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113PubMedGoogle Scholar
  38. 38.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Owens T, Bechmann I, Engelhardt B (2008) Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol 67:1113–1121CrossRefPubMedGoogle Scholar
  40. 40.
    Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14:1379–1392PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124:763–775PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92:288–293CrossRefPubMedGoogle Scholar
  44. 44.
    Sliwa M, Markovic D, Gabrusiewicz K, Synowitz M, Glass R, Zawadzka M, Wesolowska A, Kettenmann H, Kaminska B (2007) The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain 130:476–489CrossRefPubMedGoogle Scholar
  45. 45.
    Staples KJ, Sotoodehnejadnematalahi F, Pearson H, Frankenberger M, Francescut L, Ziegler-Heitbrock L, Burke B (2011) Monocyte-derived macrophages matured under prolonged hypoxia transcriptionally up-regulate HIF-1alpha mRNA. Immunobiology 216:832–839CrossRefPubMedGoogle Scholar
  46. 46.
    Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995) The role of CXC chemokines as regulators of angiogenesis. Shock 4:155–160CrossRefPubMedGoogle Scholar
  47. 47.
    Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van DJ, Walz A, Marriott D (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357CrossRefPubMedGoogle Scholar
  48. 48.
    Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S (2005) Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 14:425–431PubMedGoogle Scholar
  49. 49.
    Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD (1998) Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 18:510–520CrossRefPubMedGoogle Scholar
  50. 50.
    Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447–455CrossRefPubMedGoogle Scholar
  51. 51.
    Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741CrossRefPubMedGoogle Scholar
  52. 52.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507CrossRefPubMedGoogle Scholar
  53. 53.
    Werno C, Menrad H, Weigert A, Dehne N, Goerdt S, Schledzewski K, Kzhyshkowska J, Brune B (2010) Knockout of HIF-1alpha in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis 31:1863–1872CrossRefPubMedGoogle Scholar
  54. 54.
    Williams RL, Risau W, Zerwes HG, Drexler H, Aguzzi A, Wagner EF (1989) Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell 57:1053–1063CrossRefPubMedGoogle Scholar
  55. 55.
    Zhai H, Heppner FL, Tsirka SE (2011) Microglia/macrophages promote glioma progression. Glia 59:472–485PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Susan Brandenburg
    • 1
  • Annett Müller
    • 1
  • Kati Turkowski
    • 1
  • Yordan T. Radev
    • 1
  • Sergej Rot
    • 1
  • Christin Schmidt
    • 1
  • Alexander D. Bungert
    • 1
  • Güliz Acker
    • 1
    • 2
  • Anne Schorr
    • 3
  • Andreas Hippe
    • 3
  • Kelly Miller
    • 4
  • Frank L. Heppner
    • 4
  • Bernhard Homey
    • 3
  • Peter Vajkoczy
    • 1
    • 2
  1. 1.Department of Experimental NeurosurgeryCharité - Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of NeurosurgeryCharité - Universitätsmedizin BerlinBerlinGermany
  3. 3.Department of DermatologyUniversitätsklinikum DüsseldorfDüsseldorfGermany
  4. 4.Department of NeuropathologyCharité - Universitätsmedizin BerlinBerlinGermany

Personalised recommendations