Acta Neuropathologica

, Volume 131, Issue 4, pp 481–504 | Cite as

Immunotherapies in Alzheimer’s disease: Too much, too little, too late or off-target?

  • Isabelle St-Amour
  • Francesca Cicchetti
  • Frédéric CalonEmail author


Years of research have highlighted the importance of the immune system in Alzheimer’s disease (AD), a system that, if manipulated during strategic time windows, could potentially be tackled to treat this disorder. However, to minimize adverse effects, it is essential to first grasp which exact aspect of it may be targeted. Several clues have been collected over the years regarding specific immune players strongly modulated during different stages of AD progression. However, the inherent complexity of the immune system as well as conflicting data make it quite challenging to pinpoint a specific immune target in AD. In this review, we discuss immune-related abnormalities observed in the periphery as well as in the brain of AD patients, in relation to known risk factors of AD such as genetics, type-2 diabetes or obesity, aging, physical inactivity and hypertension. Although not investigated yet in clinical trials, C5 complement system component, CD40/CD40L interactions and the CXCR2 pathway are altered in AD patients and may represent potential therapeutic targets. Immunotherapies tested in a clinical context, those aiming to attenuate the innate immune response and those used to facilitate the removal of pathological proteins, are further discussed to try and understand the causes of the limited success reached. The prevailing eagerness to move basic research data to clinic should not overshadow the fact that a careful preclinical characterization of a drug is still required to ultimately improve the chance of clinical success. Finally, specific elements to consider prior to initiate large-scale trials are highlighted and include the replication of preclinical data, the use of small-scale human studies, the sub-typing of AD patients and the determination of pharmacokinetic and pharmacodynamics parameters such as brain bioavailability and target engagement.


Blood–brain barrier Immunization Clinical trials Immunoglobulins IVIg Lymphocytes 


Amyloid-β peptide


Alzheimer’s disease


Activated leukocyte cell adhesion molecule


Apolipoprotein E


Amyloid precursor protein


β-Site APP cleaving enzyme


Blood–brain barrier


Cluster of differentiation


Central nervous system




C reactive protein


Cerebrospinal fluid


Chemokine (C-X3-C motif) receptor 1


CXC chemokine receptor 2


Experimental autoimmune encephalomyelitis


Intercellular adhesion molecule






Intravenous immunoglobulin


Mannose binding lectin-associated serine proteases


Mannose binding lectin


Monocyte chemoattractant protein-1


Mild cognitive impairment


Macrophage inflammatory protein


Neurofibrillary tangle


Natural killer


Nonsteroidal anti-inflammatory drug


Peripheral blood mononuclear cells


Platelet endothelial cell adhesion molecule


Positron emission tomography




Ribonucleic acid




Toll-like receptor


Tumor necrosis factor


Vascular cell adhesion molecule



IS-A is supported by a CIHR-Huntington Society of Canada postdoctoral fellowship. Fond de Recherche du Québec en Santé provided salary support to FCi and FCa. The authors are grateful to Mr. Alain St-Amour from Si Design & Web for the artwork. FCa has received research grant from Grifols (Mississauga, ON, Canada). The funding source had no involvement in the study design, and in the collection, analysis or interpretation of the data.

Compliance with ethical standards

Conflict of interest

The authors have no other conflict of interest to declare.

Supplementary material

401_2015_1518_MOESM1_ESM.pdf (344 kb)
Supplementary material 1 (PDF 344 kb)


  1. 1.
    ADAPT-FS research group (2015) Follow-up evaluation of cognitive function in the randomized Alzheimer’s disease anti-inflammatory prevention trial and its follow-up study. Alzheimers Dement 11(216–25):e1Google Scholar
  2. 2.
    Ait-ghezala G, Abdullah L, Volmar C-H, Paris D, Luis CA, Quadros A, Mouzon B, Mullan MA, Keegan AP, Parrish J, Crawford FC, Mathura VS, Mullan MJ (2008) Diagnostic utility of APOE, soluble CD40, CD40L, and Abeta1-40 levels in plasma in Alzheimer’s disease. Cytokine 44:283–287PubMedCrossRefGoogle Scholar
  3. 3.
    Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8:429–431PubMedCrossRefGoogle Scholar
  4. 4.
    Association A (2012) Alzheimer’s disease facts and figures. Alzheimers Dement 2012(2):1–72Google Scholar
  5. 5.
    Anders HJ, Baumann M, Tripepi G, Mallamaci F (2015) Immunity in arterial hypertension: Associations or causalities? Nephrol Dial Transplant 11 Mar 2015. pii: gfv057 [Epub ahead of print]Google Scholar
  6. 6.
    Anderson KM, Olson KE, Estes KA, Flanagan K, Gendelman HE, Mosley RL (2014) Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders. Transl Neurodegener 3:25PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Arai H, Umemura K, Ichimiya Y, Iseki E, Eto K, Miyakawa K, Kirino E, Shibata N, Baba H, Tsuchiwata S (2015) Safety and pharmacokinetics of bapineuzumab in a single ascending-dose study in Japanese patients with mild to moderate Alzheimer’s disease. Geriatr Gerontol Int. doi: 10.1111/ggi.12516 PubMedCentralGoogle Scholar
  8. 8.
    Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27:9115–9129PubMedCrossRefGoogle Scholar
  9. 9.
    Attems J, Jellinger K, Thal DR, Van Nostrand W (2011) Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 37:75–93PubMedCrossRefGoogle Scholar
  10. 10.
    Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, Heise CE, Hoyte K, Luk W, Lu Y, Peng K, Wu P, Rouge L, Zhang Y, Lazarus RA, Scearce-Levie K, Wang W, Wu Y, Tessier-Lavigne M, Watts RJ (2011) A therapeutic antibody targeting BACE1 inhibits amyloid-{beta} production in vivo. Sci Transl Med 3:84ra43PubMedCrossRefGoogle Scholar
  11. 11.
    Bach P, Tschäpe J-A, Kopietz F, Braun G, Baade JK, Wiederhold K-H, Staufenbiel M, Prinz M, Deller T, Kalinke U, Buchholz CJ, Müller UC (2009) Vaccination with Abeta-displaying virus-like particles reduces soluble and insoluble cerebral Abeta and lowers plaque burden in APP transgenic mice. J Immunol 182:7613–7624PubMedCrossRefGoogle Scholar
  12. 12.
    Bales KR (2012) The value and limitations of transgenic mouse models used in drug discovery for Alzheimer’s disease: an update. Expert Opin Drug Discov 7:281–297PubMedCrossRefGoogle Scholar
  13. 13.
    Bartolome F, de Las Cuevas N, Munoz U, Bermejo F, Martin-Requero A (2007) Impaired apoptosis in lymphoblasts from Alzheimer’s disease patients: cross-talk of Ca2+/calmodulin and ERK1/2 signaling pathways. Cell Mol Life Sci 64:1437–1448PubMedCrossRefGoogle Scholar
  14. 14.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S (2005) Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 64:94–101PubMedCrossRefGoogle Scholar
  16. 16.
    Bourasset F, Ouellet M, Tremblay C, Julien C, Do TM, Oddo S, Laferla F, Calon F (2009) Reduction of the cerebrovascular volume in a transgenic mouse model of Alzheimer’s disease. Neuropharmacology 56:808–813PubMedCrossRefGoogle Scholar
  17. 17.
    Breitner JC, Baker LD, Montine TJ, Meinert CL, Lyketsos CG, Ashe KH, Brandt J, Craft S, Evans DE, Green RC, Ismail MS, Martin BK, Mullan MJ, Sabbagh M, Tariot PN, R. G. ADAPT (2011) Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement 7:402–411PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bruun JM, Verdich C, Toubro S, Astrup A, Richelsen B (2003) Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-alpha. Effect of weight loss in obese men. Eur J Endocrinol 148:535–542PubMedCrossRefGoogle Scholar
  19. 19.
    Buchhave P, Janciauskiene S, Zetterberg H, Blennow K, Minthon L, Hansson O (2009) Elevated plasma levels of soluble CD40 in incipient Alzheimer’s disease. Neurosci Lett 450:56–59PubMedCrossRefGoogle Scholar
  20. 20.
    Burstein AH, Zhao Q, Ross J, Styren S, Landen JW, Ma WW, McCush F, Alvey C, Kupiec JW, Bednar MM (2013) Safety and pharmacology of ponezumab (PF-04360365) after a single 10-minute intravenous infusion in subjects with mild to moderate Alzheimer disease. Clin Neuropharmacol 36:8–13PubMedCrossRefGoogle Scholar
  21. 21.
    Butchart J, Holmes C (2012) Systemic and central immunity in Alzheimer’s disease: therapeutic implications. CNS Neurosci Ther 18:64–76PubMedCrossRefGoogle Scholar
  22. 22.
    Buttini M, Masliah E, Barbour R, Grajeda H, Motter R, Johnson-Wood K, Khan K, Seubert P, Freedman S, Schenk D, Games D (2005) Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer’s disease. J Neurosci 25:9096–9101PubMedCrossRefGoogle Scholar
  23. 23.
    Calingasan NY, Erdely HA, Altar CA (2002) Identification of CD40 ligand in Alzheimer’s disease and in animal models of Alzheimer’s disease and brain injury. Neurobiol Aging 23:31–39PubMedCrossRefGoogle Scholar
  24. 24.
    Calon F (2011) Omega-3 polyunsaturated fatty acids in Alzheimer’s disease: key questions and partial answers. Curr Alzheimer Res 8:470–478PubMedCrossRefGoogle Scholar
  25. 25.
    Cantrell D (2015) Signaling in lymphocyte activation. Cold Spring Harb Perspect Biol 7:a018788PubMedCrossRefGoogle Scholar
  26. 26.
    Cash JG, Kuhel DG, Basford JE, Jaeschke A, Chatterjee TK, Weintraub NL, Hui DY (2012) Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. J Biol Chem 287:27876–27884PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cattepoel S, Hanenberg M, Kulic L, Nitsch RM (2011) Chronic intranasal treatment with an anti-Abeta(30–42) scFv antibody ameliorates amyloid pathology in a transgenic mouse model of Alzheimer’s disease. PLoS ONE 6:e18296PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9:137–145PubMedCrossRefGoogle Scholar
  29. 29.
    Cole GM, Frautschy SA (2010) Mechanisms of action of non-steroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease. CNS Neurol Disord: Drug Targets 9:140–148CrossRefGoogle Scholar
  30. 30.
    Cole GM, Morihara T, Lim GP, Yang F, Begum A, Frautschy SA (2004) NSAID and antioxidant prevention of Alzheimer’s disease: lessons from in vitro and animal models. Ann N Y Acad Sci 1035:68–84PubMedCrossRefGoogle Scholar
  31. 31.
    Counts SE, Perez SE, He B, Mufson EJ (2014) Intravenous immunoglobulin reduces tau pathology and preserves neuroplastic gene expression in the 3xTg mouse model of Alzheimer’s disease. Curr Alzheimer Res 11:655–663PubMedCrossRefGoogle Scholar
  32. 32.
    Davtyan H, Ghochikyan A, Petrushina I, Hovakimyan A, Davtyan A, Poghosyan A, Marleau AM, Movsesyan N, Kiyatkin A, Rasool S, Larsen AK, Madsen PJ, Wegener KM, Ditlevsen DK, Cribbs DH, Pedersen LO, Agadjanyan MG (2013) Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: prelude to a clinical trial. J Neurosci 33:4923–4934PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    De Strooper B, Chavez Gutierrez L (2015) Learning by failing: ideas and concepts to tackle gamma-secretases in Alzheimer’s disease and beyond. Annu Rev Pharmacol Toxicol 55:419–437PubMedCrossRefGoogle Scholar
  34. 34.
    Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, Kipnis J (2010) Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 207:1067–1080PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Desideri G, Cipollone F, Necozione S, Marini C, Lechiara MC, Taglieri G, Zuliani G, Fellin R, Mezzetti A, di Orio F, Ferri C (2008) Enhanced soluble CD40 ligand and Alzheimer’s disease: evidence of a possible pathogenetic role. Neurobiol Aging 29:348–356PubMedCrossRefGoogle Scholar
  36. 36.
    Dodel R, Rominger A, Bartenstein P, Barkhof F, Blennow K, Forster S, Winter Y, Bach JP, Popp J, Alferink J, Wiltfang J, Buerger K, Otto M, Antuono P, Jacoby M, Richter R, Stevens J, Melamed I, Goldstein J, Haag S, Wietek S, Farlow M, Jessen F (2013) Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol 12:233–243PubMedCrossRefGoogle Scholar
  37. 37.
    Doens D, Fernandez PL (2014) Microglia receptors and their implications in the response to amyloid beta for Alzheimer’s disease pathogenesis. J Neuroinflammation 11:48PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Farrall AJ, Wardlaw JM (2009) Blood–brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiol Aging 30:337–352PubMedCrossRefGoogle Scholar
  39. 39.
    Ferrer I, Rovira MB, Guerra MLS, Rey MJ, Costa-Jussa F (2004) Neuropathology and pathogenesis of encephalitis following amyloid beta immunization in Alzheimer’s disease. Brain Pathol 14:11–20PubMedCrossRefGoogle Scholar
  40. 40.
    Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, Hama S, Way D, Weinand M, Witte M, Lorton D, Kuo YM, Roher AE (1998) Amyloid-beta induces chemokine secretion and monocyte migration across a human blood–brain barrier model. Mol Med 4:480–489PubMedPubMedCentralGoogle Scholar
  41. 41.
    Franklin EE, Perrin RJ, Vincent B, Baxter M, Morris JC, Cairns NJ (2015) Brain collection, standardized neuropathologic assessment, and comorbidity in Alzheimer’s disease neuroimaging initiative 2 participants. Alzheimers Dement 11:815–822PubMedCrossRefGoogle Scholar
  42. 42.
    Gale SC, Gao L, Mikacenic C, Coyle SM, Rafaels N, Murray Dudenkov T, Madenspacher JH, Draper DW, Ge W, Aloor JJ, Azzam KM, Lai L, Blackshear PJ, Calvano SE, Barnes KC, Lowry SF, Corbett S, Wurfel MM, Fessler MB (2014) APOepsilon4 is associated with enhanced in vivo innate immune responses in human subjects. J Allergy Clin Immunol 134:127–134PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389PubMedCrossRefGoogle Scholar
  44. 44.
    Giunta B, Rezai-Zadeh K, Tan J (2010) Impact of the CD40-CD40L dyad in Alzheimer’s disease. CNS Neurol Disord: Drug Targets 9:149–155CrossRefGoogle Scholar
  45. 45.
    Gomez-Isla T, Blesa R, Boada M, Clarimon J, Del Ser T, Domenech G, Ferro JM, Gomez-Anson B, Manubens JM, Martinez-Lage JM, Munoz D, Pena-Casanova J, Torres F (2008) A randomized, double-blind, placebo controlled-trial of triflusal in mild cognitive impairment: the TRIMCI study. Alzheimer Dis Assoc Disord 22:21–29PubMedCrossRefGoogle Scholar
  46. 46.
    Gomez-Nicola D, Boche D (2015) Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease. Alzheimers Res Ther 7:42PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gong B, Pan Y, Zhao W, Knable L, Vempati P, Begum S, Ho L, Wang J, Yemul S, Barnum S, Bilski A, Gong BY, Pasinetti GM (2013) IVIG immunotherapy protects against synaptic dysfunction in Alzheimer’s disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol Immunol 56:619–629PubMedCrossRefGoogle Scholar
  48. 48.
    Guadagna S, Esiri MM, Williams RJ, Francis PT (2012) Tau phosphorylation in human brain: relationship to behavioral disturbance in dementia. Neurobiol Aging 33:2798–2806PubMedCrossRefGoogle Scholar
  49. 49.
    Guan X, Zou J, Gu H, Yao Z (2012) Short amyloid-beta immunogens with spacer-enhanced immunogenicity without junctional epitopes for Alzheimer’s disease immunotherapy. NeuroReport 23:879–884PubMedCrossRefGoogle Scholar
  50. 50.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hartung H-P, Mouthon L, Ahmed R, Jordan S, Laupland KB, Jolles S (2009) Clinical applications of intravenous immunoglobulins (IVIg)–beyond immunodeficiencies and neurology. Clin Exp Immunol 158(Suppl 1):23–33PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405PubMedCrossRefGoogle Scholar
  53. 53.
    Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372PubMedCrossRefGoogle Scholar
  54. 54.
    Herrmann A, Spires-Jones T (2015) Clearing the way for tau immunotherapy in Alzheimer’s disease. J Neurochem 132:1–4PubMedCrossRefGoogle Scholar
  55. 55.
    Ho L, Pieroni C, Winger D, Purohit DP, Aisen PS, Pasinetti GM (1999) Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. J Neurosci Res 57:295–303PubMedCrossRefGoogle Scholar
  56. 56.
    Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223PubMedCrossRefGoogle Scholar
  57. 57.
    Honig LS (2012) Translational research in neurology: dementia. Arch Neurol 69:969–977PubMedPubMedCentralGoogle Scholar
  58. 58.
    Hoozemans JJ, Rozemuller AJ, van Haastert ES, Eikelenboom P, van Gool WA (2011) Neuroinflammation in Alzheimer’s disease wanes with age. J Neuroinflammation 8:171PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ifergan I, Kebir H, Alvarez JI, Marceau G, Bernard M, Bourbonniere L, Poirier J, Duquette P, Talbot PJ, Arbour N, Prat A (2011) Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on alpha4 integrin. Brain 134:3560–3577PubMedCrossRefGoogle Scholar
  60. 60.
    Ifergan I, Kebir H, Terouz S, Alvarez JI, Lecuyer MA, Gendron S, Bourbonniere L, Dunay IR, Bouthillier A, Moumdjian R, Fontana A, Haqqani A, Klopstein A, Prinz M, Lopez-Vales R, Birchler T, Prat A (2011) Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol 70:751–763PubMedCrossRefGoogle Scholar
  61. 61.
    Jaturapatporn D, Isaac MG, McCleery J, Tabet N (2012) Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev 2:CD006378PubMedGoogle Scholar
  62. 62.
    Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D, Karlo JC, Sousa GL, Cotleur AC, Butovsky O, Bekris L, Staugaitis SM, Leverenz JB, Pimplikar SW, Landreth GE, Howell GR, Ransohoff RM, Lamb BT (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212:287–295PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Jiang T, Tan L, Zhu XC, Zhang QQ, Cao L, Tan MS, Gu LZ, Wang HF, Ding ZZ, Zhang YD, Yu JT (2014) Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 39:2949–2962PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Julien C, Tremblay C, Phivilay A, Berthiaume L, Emond V, Julien P, Calon F (2010) High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging 31:1516–1531PubMedCrossRefGoogle Scholar
  66. 66.
    Kalaria RN, Akinyemi R, Ihara M (2012) Does vascular pathology contribute to Alzheimer changes? J Neurol Sci 322:141–147PubMedCrossRefGoogle Scholar
  67. 67.
    Kang JH, Korecka M, Toledo JB, Trojanowski JQ, Shaw LM (2013) Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-beta(1–42) and tau proteins as Alzheimer disease biomarkers. Clin Chem 59:903–916PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kedzierska K, Valkenburg SA, Doherty PC, Davenport MP, Venturi V (2012) Use it or lose it: establishment and persistence of T cell memory. Front Immunol 3:357PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kim J, Eltorai AE, Jiang H, Liao F, Verghese PB, Kim J, Stewart FR, Basak JM, Holtzman DM (2012) Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Abeta amyloidosis. J Exp Med 209:2149–2156PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M (2004) T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci USA 101:8180–8185PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kirshner HS, Bradshaw M (2015) The inflammatory form of cerebral amyloid angiopathy or “cerebral amyloid angiopathy-related inflammation” (CAARI). Curr Neurol Neurosci Rep 15:54PubMedCrossRefGoogle Scholar
  72. 72.
    Kiyota T, Gendelman HE, Weir RA, Higgins EE, Zhang G, Jain M (2013) CCL2 affects beta-amyloidosis and progressive neurocognitive dysfunction in a mouse model of Alzheimer’s disease. Neurobiol Aging 34:1060–1068PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri F, Tahirovic S, Lleo A, Alcolea D, Fortea J, Willem M, Lammich S, Molinuevo JL, Sanchez-Valle R, Antonell A, Ramirez A, Heneka MT, Sleegers K, van der Zee J, Martin JJ, Engelborghs S, Demirtas-Tatlidede A, Zetterberg H, Van Broeckhoven C, Gurvit H, Wyss-Coray T, Hardy J, Colonna M, Haass C (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86PubMedCrossRefGoogle Scholar
  74. 74.
    Kornete M, Mason ES, Piccirillo CA (2013) Immune regulation in T1D and T2D: prospective role of Foxp3+ Treg cells in disease pathogenesis and treatment. Front Endocrinol 4:76Google Scholar
  75. 75.
    LaFerla FM, Green KN (2012) Animal models of Alzheimer disease. Cold Spring Harb Perspect Med 2:a006320PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Landen JW, Zhao Q, Cohen S, Borrie M, Woodward M, Billing CBJ, Bales K, Alvey C, McCush F, Yang J, Kupiec JW, Bednar MM (2013) Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin Neuropharmacol 36:14–23PubMedCrossRefGoogle Scholar
  77. 77.
    Larbi A, Pawelec G, Witkowski JM, Schipper HM, Derhovanessian E, Goldeck D, Fulop T (2009) Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J Alzheimers Dis 17:91–103PubMedGoogle Scholar
  78. 78.
    Layé S, Madore C, St-Amour I, Delpech JC, Joffre C, Nadjar A, Calon F (2015) N-3 polyunsaturated fatty acid and neuroinflammation in aging and Alzheimer’s disease. Nutr Aging 3:33–47CrossRefGoogle Scholar
  79. 79.
    Lee EB, Leng LZ, Zhang B, Kwong L, Trojanowski JQ, Abel T, Lee VM-Y (2006) Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem 281:4292–4299PubMedCrossRefGoogle Scholar
  80. 80.
    Lee J (2013) Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 diabetes. Arch Pharm Res 36:208–222PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Levites Y, Das P, Price RW, Rochette MJ, Kostura LA, McGowan EM, Murphy MP, Golde TE (2006) Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 116:193–201PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Leyhe T, Andreasen N, Simeoni M, Reich A, von Arnim CA, Tong X, Yeo A, Khan S, Loercher A, Chalker M, Hottenstein C, Zetterberg H, Hilpert J, Mistry P (2014) Modulation of beta-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: a phase I study. Alzheimers Res Ther 6:19PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Li Q, Lebson L, Lee DC, Nash K, Grimm J, Rosenthal A, Selenica ML, Morgan D, Gordon MN (2012) Chronological age impacts immunotherapy and monocyte uptake independent of amyloid load. J Neuroimmune Pharmacol 7:202–214PubMedCrossRefGoogle Scholar
  84. 84.
    Liao F, Hori Y, Hudry E, Bauer AQ, Jiang H, Mahan TE, Lefton KB, Zhang TJ, Dearborn JT, Kim J, Culver JP, Betensky R, Wozniak DF, Hyman BT, Holtzman DM (2014) Anti-ApoE antibody given after plaque onset decreases Abeta accumulation and improves brain function in a mouse model of Abeta amyloidosis. J Neurosci 34:7281–7292PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Liu B, Frost JL, Sun J, Fu H, Grimes S, Blackburn P, Lemere CA (2013) MER5101, a novel Abeta1-15: DT conjugate vaccine, generates a robust anti-Abeta antibody response and attenuates Abeta pathology and cognitive deficits in APPswe/PS1DeltaE9 transgenic mice. J Neurosci 33:7027–7037PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Liu YJ, Guo DW, Tian L, Shang DS, Zhao WD, Li B, Fang WG, Zhu L, Chen YH (2010) Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging 31:175–188PubMedCrossRefGoogle Scholar
  87. 87.
    Lobello K, Ryan JM, Liu E, Rippon G, Black R (2012) Targeting beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int J Alzheimers Dis 2012:628070PubMedPubMedCentralGoogle Scholar
  88. 88.
    Loeffler DA, Camp DM, Bennett DA (2008) Plaque complement activation and cognitive loss in Alzheimer’s disease. J Neuroinflammation 5:9PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Loeffler DA, Camp DM, Schonberger MB, Singer DJ, LeWitt PA (2004) Early complement activation increases in the brain in some aged normal subjects. Neurobiol Aging 25:1001–1007PubMedCrossRefGoogle Scholar
  90. 90.
    Lombardi VR, Garcia M, Rey L, Cacabelos R (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s Disease (AD) individuals. J Neuroimmunol 97:163–171PubMedCrossRefGoogle Scholar
  91. 91.
    Man S-M, Ma Y-R, Shang D-S, Zhao W-D, Li B, Guo D-W, Fang W-G, Zhu L, Chen Y-H (2007) Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging 28:485–496PubMedCrossRefGoogle Scholar
  92. 92.
    Mantile F, Basile C, Cicatiello V, De Diana F, Caivano A, De Piergiuseppe B, Prisco A (2011) A multimeric immunogen for the induction of immune memory to beta-amyloid. Immunol Cell Biol 89:604–609PubMedCrossRefGoogle Scholar
  93. 93.
    Martin BK, Szekely C, Brandt J, Piantadosi S, Breitner JC, Craft S, Evans D, Green R, Mullan M (2008) Cognitive function over time in the Alzheimer’s disease anti-inflammatory prevention trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 65:896–905PubMedCrossRefGoogle Scholar
  94. 94.
    Masliah E, Hansen L, Adame A, Crews L, Bard F, Lee C, Seubert P, Games D, Kirby L, Schenk D (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131PubMedCrossRefGoogle Scholar
  95. 95.
    McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126:479–497PubMedCrossRefGoogle Scholar
  96. 96.
    McMaster WG, Kirabo A, Madhur MS, Harrison DG (2015) Inflammation, immunity, and hypertensive end-organ damage. Circ Res 116:1022–1033PubMedCrossRefGoogle Scholar
  97. 97.
    Meinert CL, McCaffrey LD, Breitner JC (2009) Alzheimer’s disease anti-inflammatory prevention trial: design, methods, and baseline results. Alzheimers Dement 5:93–104PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Millan J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol 8:113–123PubMedCrossRefGoogle Scholar
  99. 99.
    Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A, Comolli R, Paoletti F, La Porta CA (2004) Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol 39:1555–1561PubMedCrossRefGoogle Scholar
  100. 100.
    Moreth J, Mavoungou C, Schindowski K (2013) Passive anti-amyloid immunotherapy in Alzheimer’s disease: What are the most promising targets? Immun Ageing 10:18PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, Engelhardt B, Hallenbeck JM, Lonser RR, Ohlfest JR, Prat A, Scarpa M, Smeyne RJ, Drewes LR, Neuwelt EA (2013) Immunologic privilege in the central nervous system and the blood–brain barrier. J Cereb Blood Flow Metab 33:13–21PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O’Byrne PM, Stryszak P, Gann L, Sadeh J, Chanez P (2012) Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy 42:1097–1103PubMedCrossRefGoogle Scholar
  103. 103.
    Nascimento CM, Pereira JR, de Andrade LP, Garuffi M, Talib LL, Forlenza OV, Cancela JM, Cominetti MR, Stella F (2014) Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res 11:799–805PubMedCrossRefGoogle Scholar
  104. 104.
    Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452PubMedCrossRefGoogle Scholar
  105. 105.
    Nikolic WV, Hou H, Town T, Zhu Y, Giunta B, Sanberg CD, Zeng J, Luo D, Ehrhart J, Mori T, Sanberg PR, Tan J (2008) Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Dev 17:423–439PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM (2006) Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem 281:39413–39423PubMedCrossRefGoogle Scholar
  107. 107.
    Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54PubMedCrossRefGoogle Scholar
  108. 108.
    Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, Klunk WE, Ashford E, Yoo K, Xu ZX, Loetscher H, Santarelli L (2012) Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 69:198–207PubMedCrossRefGoogle Scholar
  109. 109.
    Parajuli B, Horiuchi H, Mizuno T, Takeuchi H, Suzumura A (2015) CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia 63:2274–2284PubMedCrossRefGoogle Scholar
  110. 110.
    Pardridge WM (2009) Alzheimer’s disease drug development and the problem of the blood–brain barrier. Alzheimers Dement 5:427–432PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pasinetti GM, Aisen PS (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87:319–324PubMedCrossRefGoogle Scholar
  112. 112.
    Patel KR (2015) Biogen’s aducanumab raises hope that Alzheimer’s can be treated at its source. Manag Care 24:19Google Scholar
  113. 113.
    Pellicano M, Larbi A, Goldeck D, Colonna-Romano G, Buffa S, Bulati M, Rubino G, Iemolo F, Candore G, Caruso C, Derhovanessian E, Pawelec G (2012) Immune profiling of Alzheimer patients. J Neuroimmunol 242:52–59PubMedCrossRefGoogle Scholar
  114. 114.
    Petrushina I, Ghochikyan A, Mkrtichyan M, Mamikonyan G, Movsesyan N, Ajdari R, Vasilevko V, Karapetyan A, Lees A, Agadjanyan MG, Cribbs DH (2008) Mannan-Abeta28 conjugate prevents Abeta-plaque deposition, but increases microhemorrhages in the brains of vaccinated Tg2576 (APPsw) mice. J Neuroinflammation 5:42PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Pirttila T, Mattinen S, Frey H (1992) The decrease of CD8-positive lymphocytes in Alzheimer’s disease. J Neurol Sci 107:160–165PubMedCrossRefGoogle Scholar
  116. 116.
    Prokop S, Miller KR, Heppner FL (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126:461–477PubMedCrossRefGoogle Scholar
  117. 117.
    Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H (2012) Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation 9:105PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Reale M, Iarlori C, Gambi F, Feliciani C, Salone A, Toma L, DeLuca G, Salvatore M, Conti P, Gambi D (2004) Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. J Neuroimmunol 148:162–171PubMedCrossRefGoogle Scholar
  119. 119.
    Relkin N (2014) Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J Clin Immunol 34(Suppl 1):S74–S79PubMedCrossRefGoogle Scholar
  120. 120.
    Rennard SI, Dale DC, Donohue JF, Kanniess F, Magnussen H, Sutherland ER, Watz H, Lu S, Stryszak P, Rosenberg E, Staudinger H (2015) CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med 191:1001–1011PubMedCrossRefGoogle Scholar
  121. 121.
    Rezai-Zadeh K, Gate D, Szekely CA, Town T (2009) Can peripheral leukocytes be used as Alzheimer’s disease biomarkers? Expert Rev Neurother 9:1623–1633PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Richartz E, Stransky E, Batra A, Simon P, Lewczuk P, Buchkremer G, Bartels M, Schott K (2005) Decline of immune responsiveness: A pathogenetic factor in Alzheimer’s disease? J Psychiatr Res 39:535–543PubMedCrossRefGoogle Scholar
  124. 124.
    Ricklin D, Lambris JD (2013) Complement in immune and inflammatory disorders: therapeutic interventions. J Immunol 190:3839–3847PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Robinson SR, Bishop GM, Lee H-G, Munch G (2004) Lessons from the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol Aging 25:609–615PubMedCrossRefGoogle Scholar
  126. 126.
    Romeo J, Warnberg J, Pozo T, Marcos A (2010) Physical activity, immunity and infection. Proc Nutr Soc 69:390–399PubMedCrossRefGoogle Scholar
  127. 127.
    Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovadia H, Abramsky O (2006) Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol 63:1459–1467PubMedCrossRefGoogle Scholar
  128. 128.
    Rouzer CA, Marnett LJ (2009) Cyclooxygenases: structural and functional insights. J Lipid Res 50(Suppl):S29–S34PubMedPubMedCentralGoogle Scholar
  129. 129.
    Rus H, Cudrici C, Niculescu F (2005) The role of the complement system in innate immunity. Immunol Res 33:103–112PubMedCrossRefGoogle Scholar
  130. 130.
    Rymkiewicz PD, Heng YX, Vasudev A, Larbi A (2012) The immune system in the aging human. Immunol Res 53:235–250PubMedCrossRefGoogle Scholar
  131. 131.
    Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Alberoni M, Nemni R, Clerici M (2011) Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav Immun 25:539–547PubMedCrossRefGoogle Scholar
  133. 133.
    Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472PubMedCrossRefGoogle Scholar
  134. 134.
    Schellenberg GD, Montine TJ (2012) The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathol 124:305–323PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177PubMedCrossRefGoogle Scholar
  136. 136.
    Selkoe DJ (2013) The therapeutics of Alzheimer’s disease: where we stand and where we are heading. Ann Neurol 74:328–336PubMedCrossRefGoogle Scholar
  137. 137.
    Senchina DS, Kohut ML (2007) Immunological outcomes of exercise in older adults. Clin Interv Aging 2:3–16PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Shen Y, Li R, McGeer EG, McGeer PL (1997) Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer brain. Brain Res 769:391–395PubMedCrossRefGoogle Scholar
  139. 139.
    Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, Dowsett SA, Pontecorvo MJ, Dean RA, Demattos R (2015) Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement. doi: 10.1016/j.jalz.2015.06.1893 Google Scholar
  140. 140.
    Sokolova A, Hill MD, Rahimi F, Warden LA, Halliday GM, Shepherd CE (2009) Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathol 19:392–398PubMedCrossRefGoogle Scholar
  141. 141.
    Speciale L, Calabrese E, Saresella M, Tinelli C, Mariani C, Sanvito L, Longhi R, Ferrante P (2007) Lymphocyte subset patterns and cytokine production in Alzheimer’s disease patients. Neurobiol Aging 28:1163–1169PubMedCrossRefGoogle Scholar
  142. 142.
    Sperling R, Mormino E, Johnson K (2014) The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84:608–622PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Lieberburg I, Arrighi HM, Morris KA, Lu Y, Liu E, Gregg KM, Brashear HR, Kinney GG, Black R, Grundman M (2012) Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 11:241–249PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    St-Amour I, Pare I, Alata W, Coulombe K, Ringuette-Goulet C, Drouin-Ouellet J, Vandal M, Soulet D, Bazin R, Calon F (2013) Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood–brain barrier. J Cereb Blood Flow Metab 33:1983–1992PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    St-Amour I, Pare I, Tremblay C, Coulombe K, Bazin R, Calon F (2014) IVIg protects the 3xTg-AD mouse model of Alzheimer’s disease from memory deficit and Abeta pathology. J Neuroinflammation 11:54PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Stieler JT, Lederer C, Bruckner MK, Wolf H, Holzer M, Gertz HJ, Arendt T (2001) Impairment of mitogenic activation of peripheral blood lymphocytes in Alzheimer’s disease. NeuroReport 12:3969–3972PubMedCrossRefGoogle Scholar
  147. 147.
    Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Sudduth TL, Greenstein A, Wilcock DM (2013) Intracranial injection of Gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers Abeta in APP/PS1 mice along a different time course than anti-Abeta antibodies. J Neurosci 33:9684–9692PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Szabo P, Relkin N, Weksler ME (2008) Natural human antibodies to amyloid beta peptide. Autoimmun Rev 7:415–420PubMedCrossRefGoogle Scholar
  150. 150.
    Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85:352–370PubMedCrossRefGoogle Scholar
  151. 151.
    Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2:a006296PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Tarawneh R, Holtzman DM (2012) The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2:a006148PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Teng E, Yamasaki TR, Tran M, Hsiao JJ, Sultzer DL, Mendez MF (2014) Cerebrospinal fluid biomarkers in clinical subtypes of early-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 37:307–314PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Thathiah A, De Strooper B (2011) The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat Rev Neurosci 12:73–87PubMedCrossRefGoogle Scholar
  155. 155.
    Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K (2000) Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res 885:117–121PubMedCrossRefGoogle Scholar
  156. 156.
    Tremblay C, Pilote M, Phivilay A, Emond V, Bennett DA, Calon F (2007) Biochemical characterization of Abeta and tau pathologies in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 12:377–390PubMedGoogle Scholar
  157. 157.
    Vandal M, White PJ, Chevrier G, Tremblay C, St-Amour I, Planel E, Marette A, Calon F (2015) Age-dependent impairment of glucose tolerance in the 3xTg-AD mouse model of Alzheimer’s disease. FASEB J 29:4273–4284PubMedCrossRefGoogle Scholar
  158. 158.
    Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrancois D, Virgili J, Planel E, Giguere Y, Marette A, Calon F (2014) Insulin reverses the high-fat diet-induced increase in brain Abeta and improves memory in an animal model of Alzheimer disease. Diabetes 63:4291–4301PubMedCrossRefGoogle Scholar
  159. 159.
    Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park JS, Couillard-Despres S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Vlad SC, Miller DR, Kowall NW, Felson DT (2008) Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70:1672–1677PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Vukic V, Callaghan D, Walker D, Lue LF, Liu QY, Couraud PO, Romero IA, Weksler B, Stanimirovic DB, Zhang W (2009) Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway. Neurobiol Dis 34:95–106PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF (2009) Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 215:5–19PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, Holtzman DM, Cirrito JR, Colonna M (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071PubMedCrossRefGoogle Scholar
  164. 164.
    Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22:1041–1050PubMedCrossRefGoogle Scholar
  165. 165.
    Whitehead AL, Sully BG, Campbell MJ (2014) Pilot and feasibility studies: Is there a difference from each other and from a randomised controlled trial? Contemp Clin Trials 38:130–133PubMedCrossRefGoogle Scholar
  166. 166.
    Wilcock D, Rojiani A, Rosenthal A, Subbarao S, Freeman M, Gordon M, Morgan D (2004) Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation. doi: 10.1186/1742-2094-1-24 PubMedPubMedCentralGoogle Scholar
  167. 167.
    Wilcock DM, Jantzen PT, Li Q, Morgan D, Gordon MN (2007) Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience 144:950–960PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Wilcock DM, Rojiani A, Rosenthal A, Levkowitz G, Subbarao S, Alamed J, Wilson D, Wilson N, Freeman MJ, Gordon MN, Morgan D (2004) Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 24:6144–6151PubMedCrossRefGoogle Scholar
  169. 169.
    Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, Blennow K, Lundmark J, Staufenbiel M, Orgogozo JM, Graf A (2012) Safety, tolerability, and antibody response of active Abeta immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11:597–604PubMedCrossRefGoogle Scholar
  170. 170.
    Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol 109:181–190PubMedCrossRefGoogle Scholar
  171. 171.
    Wolf SA, Steiner B, Akpinarli A, Kammertoens T, Nassenstein C, Braun A, Blankenstein T, Kempermann G (2009) CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 182:3979–3984PubMedCrossRefGoogle Scholar
  172. 172.
    Wu F, Zhao Y, Jiao T, Shi D, Zhu X, Zhang M, Shi M, Zhou H (2015) CXCR2 is essential for cerebral endothelial activation and leukocyte recruitment during neuroinflammation. J Neuroinflammation 12:98PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Xue SR, Xu DH, Yang XX, Dong WL (2009) Alterations in lymphocyte subset patterns and co-stimulatory molecules in patients with Alzheimer disease. Chin Med J 122:1469–1472PubMedGoogle Scholar
  175. 175.
    Yanamadala V, Friedlander RM (2010) Complement in neuroprotection and neurodegeneration. Trends Mol Med 16:69–76PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Yang YM, Shang DS, Zhao WD, Fang WG, Chen YH (2013) Microglial TNF-alpha-dependent elevation of MHC class I expression on brain endothelium induced by amyloid-beta promotes T cell transendothelial migration. Neurochem Res 38:2295–2304PubMedCrossRefGoogle Scholar
  177. 177.
    Youn JC, Yu HT, Lim BJ, Koh MJ, Lee J, Chang DY, Choi YS, Lee SH, Kang SM, Jang Y, Yoo OJ, Shin EC, Park S (2013) Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 62:126–133PubMedCrossRefGoogle Scholar
  178. 178.
    Zanjani H, Finch CE, Kemper C, Atkinson J, McKeel D, Morris JC, Price JL (2005) Complement activation in very early Alzheimer disease. Alzheimer Dis Assoc Disord 19:55–66PubMedCrossRefGoogle Scholar
  179. 179.
    Zhang K, Tian L, Liu L, Feng Y, Dong YB, Li B, Shang DS, Fang WG, Cao YP, Chen YH (2013) CXCL1 contributes to beta-amyloid-induced transendothelial migration of monocytes in Alzheimer’s disease. PLoS ONE 8:e72744PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Isabelle St-Amour
    • 1
    • 2
    • 3
  • Francesca Cicchetti
    • 1
    • 2
  • Frédéric Calon
    • 1
    • 3
    Email author
  1. 1.Axe NeurosciencesCentre de Recherche du CHU de QuébecQuebecCanada
  2. 2.Département de Psychiatrie & Neurosciences, Faculté de médecineUniversité LavalQuebecCanada
  3. 3.Faculté de pharmacieUniversité LavalQuebecCanada

Personalised recommendations