Acta Neuropathologica

, Volume 130, Issue 6, pp 765–781 | Cite as

Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants

  • Kevin Blauth
  • John Soltys
  • Adeline Matschulat
  • Cory R. Reiter
  • Alanna Ritchie
  • Nicholas L. Baird
  • Jeffrey L. Bennett
  • Gregory P. Owens
Original Paper


B cells are implicated in the etiology of multiple sclerosis (MS). Intrathecal IgG synthesis, cerebrospinal fluid (CSF) oligoclonal bands and lesional IgG deposition suggest a role for antibody-mediated pathology. We examined the binding of IgG1 monoclonal recombinant antibodies (rAbs) derived from MS patient CSF expanded B cell clones to central nervous system (CNS) tissue. MS rAbs displaying CNS binding to mouse and human CNS tissue were further tested for their ability to induce complement-mediated tissue injury in ex vivo spinal cord explant cultures. The staining of CNS tissue, primary human astrocytes and human neurons revealed a measurable bias in MS rAb binding to antigens preferentially expressed on astrocytes and neurons. MS rAbs that recognize myelin-enriched antigens were rarely detected. Both myelin-specific and some astrocyte/neuronal-specific MS rAbs caused significant myelin loss and astrocyte activation when applied to spinal cord explant cultures in the presence of complement. Overall, the intrathecal B cell response in multiple sclerosis binds to both glial and neuronal targets and produces demyelination in spinal cord explant cultures implicating intrathecal IgG in MS pathogenesis.


Multiple sclerosis Monoclonal antibody Demyelination Autoimmunity Neuroimmunology Spinal cord slice cultures 

Supplementary material

401_2015_1500_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 kb)
401_2015_1500_MOESM2_ESM.jpg (89 kb)
Supplemental Fig. 1. Superbiochip array slides were deparaffinized and immunostained as described in the methods section. rAb immunostaining is in green, DAPI is in blue. Scale bar = 100 µm. (a) MS04-2 # 30 peripheral reactivity was punctate and often associated with epithelia. (b) MS05-3 # 38 peripheral reactivity was punctate in esophagus and pancreas but more ubiquitously expressed in ileum and skin. (c) IC05-2 # 2 reactivity was largely absent in the periphery (JPEG 89 kb)


  1. 1.
    Baranzini SE, Jeong MC, Butunoi C, Murray RS, Bernard CC, Oksenberg JR (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163:5133–5144PubMedGoogle Scholar
  2. 2.
    Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, Fan B, O’Connor RA, Anderton SM, Bar-Or A, Fillatreau S, Gray D (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209:1001–1010. doi:10.1084/jem.20111675 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Bennett JL, Haubold K, Ritchie AM, Edwards SJ, Burgoon M, Shearer AJ, Gilden DH, Owens GP (2008) CSF IgG heavy-chain bias in patients at the time of a clinically isolated syndrome. J Neuroimmunol 199:126–132. doi:10.1016/j.jneuroim.2008.04.031 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, Glogowska M, Case D, Antel JP, Owens GP, Gilden D, Nessler S, Stadelmann C, Hemmer B (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66:617–629. doi:10.1002/ana.21802 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238. doi:10.1038/nature04753 CrossRefPubMedGoogle Scholar
  6. 6.
    Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, Adzemovic M, Bauer J, Berger T, Fujihara K, Itoyama Y, Lassmann H (2009) Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66:630–643. doi:10.1002/ana.21837 CrossRefPubMedGoogle Scholar
  7. 7.
    Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P, Bo L (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25. doi:10.1002/ana.21311 CrossRefPubMedGoogle Scholar
  8. 8.
    Brennan KM, Galban-Horcajo F, Rinaldi S, O’Leary CP, Goodyear CS, Kalna G, Arthur A, Elliot C, Barnett S, Linington C, Bennett JL, Owens GP, Willison HJ (2011) Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. J Neuroimmunol 238:87–95. doi:10.1016/j.jneuroim.2011.08.002 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Burgoon MP, Hammack BN, Owens GP, Maybach AL, Eikelenboom MJ, Gilden DH (2003) Oligoclonal immunoglobulins in cerebrospinal fluid during varicella zoster virus (VZV) vasculopathy are directed against VZV. Ann Neurol 54:459–463. doi:10.1002/ana.10685 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Cepok S, Jacobsen M, Schock S, Omer B, Jaekel S, Boddeker I, Oertel WH, Sommer N, Hemmer B (2001) Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain J Neurol 124:2169–2176CrossRefGoogle Scholar
  11. 11.
    Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J, Chan A, Stroet A, Olsson T, Willison H, Barnett SC, Meinl E, Linington C (2012) Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain J Neurol 135:1819–1833. doi:10.1093/brain/aws105 CrossRefGoogle Scholar
  12. 12.
    Gilden DH (2005) Infectious causes of multiple sclerosis. Lancet Neurol 4:195–202. doi:10.1016/S1474-4422(05)01017-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH, Group HT (2008) B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N Engl J Med 358:676–688. doi:10.1056/NEJMoa0706383 CrossRefPubMedGoogle Scholar
  14. 14.
    Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753. doi:10.1002/ana.21800 CrossRefPubMedGoogle Scholar
  15. 15.
    Kabat EA, Moore DH, Landow H (1942) An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Investig 21:571–577. doi:10.1172/JCI101335 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Kremenchutzky M, Rice GP, Baskerville J, Wingerchuk DM, Ebers GC (2006) The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain J Neurol 129:584–594. doi:10.1093/brain/awh721 CrossRefGoogle Scholar
  17. 17.
    Lisak RP, Benjamins JA, Nedelkoska L, Barger JL, Ragheb S, Fan B, Ouamara N, Johnson TA, Rajasekharan S, Bar-Or A (2012) Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J Neuroimmunol 246:85–95. doi:10.1016/j.jneuroim.2012.02.015 CrossRefPubMedGoogle Scholar
  18. 18.
    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717CrossRefPubMedGoogle Scholar
  19. 19.
    Obermeier B, Mentele R, Malotka J, Kellermann J, Kumpfel T, Wekerle H, Lottspeich F, Hohlfeld R, Dornmair K (2008) Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med 14:688–693. doi:10.1038/nm1714 CrossRefPubMedGoogle Scholar
  20. 20.
    Owens GP, Bennett JL (2012) Trigger, pathogen, or bystander: the complex nexus linking Epstein–Barr virus and multiple sclerosis. Mult Scler 18:1204–1208. doi:10.1177/1352458512448109 CrossRefPubMedGoogle Scholar
  21. 21.
    Owens GP, Bennett JL, Lassmann H, O’Connor KC, Ritchie AM, Shearer A, Lam C, Yu X, Birlea M, DuPree C, Williamson RA, Hafler DA, Burgoon MP, Gilden D (2009) Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann Neurol 65:639–649. doi:10.1002/ana.21641 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Owens GP, Kraus H, Burgoon MP, Smith-Jensen T, Devlin ME, Gilden DH (1998) Restricted use of VH4 germline segments in an acute multiple sclerosis brain. Ann Neurol 43:236–243. doi:10.1002/ana.410430214 CrossRefPubMedGoogle Scholar
  23. 23.
    Owens GP, Winges KM, Ritchie AM, Edwards S, Burgoon MP, Lehnhoff L, Nielsen K, Corboy J, Gilden DH, Bennett JL (2007) VH4 gene segments dominate the intrathecal humoral immune response in multiple sclerosis. J Immunol 179:6343–6351CrossRefPubMedGoogle Scholar
  24. 24.
    Prineas JW, Wright RG (1978) Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab Investig J Tech Methods Pathol 38:409–421Google Scholar
  25. 25.
    Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain J Neurol 133:349–361. doi:10.1093/brain/awp309 CrossRefGoogle Scholar
  26. 26.
    Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, Rothhammer V, Chan A, Gold R, Berthele A, Bennett JL, Korn T, Hemmer B (2012) Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med 367:115–123. doi:10.1056/NEJMoa1110740 CrossRefPubMedGoogle Scholar
  27. 27.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285. doi:10.1056/NEJM199801293380502 CrossRefPubMedGoogle Scholar
  28. 28.
    Traugott U, Reinherz EL, Raine CS (1983) Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219:308–310CrossRefPubMedGoogle Scholar
  29. 29.
    von Budingen HC, Harrer MD, Kuenzle S, Meier M, Goebels N (2008) Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies. Eur J Immunol 38:2014–2023. doi:10.1002/eji.200737784 CrossRefGoogle Scholar
  30. 30.
    Winges KM, Gilden DH, Bennett JL, Yu X, Ritchie AM, Owens GP (2007) Analysis of multiple sclerosis cerebrospinal fluid reveals a continuum of clonally related antibody-secreting cells that are predominantly plasma blasts. J Neuroimmunol 192:226–234. doi:10.1016/j.jneuroim.2007.10.009 CrossRefPubMedGoogle Scholar
  31. 31.
    Yahr MD, Kabat EA (1957) Cerebrospinal fluid and serum gamma globulin levels in multiple sclerosis: changes induced by large doses of prednisone. Trans Am Neurol Assoc 115–118 (82nd Meeting; discussion 118–119) Google Scholar
  32. 32.
    Zhang H, Bennett JL, Verkman AS (2011) Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 70:943–954. doi:10.1002/ana.22551 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Kevin Blauth
    • 1
  • John Soltys
    • 1
    • 2
  • Adeline Matschulat
    • 1
  • Cory R. Reiter
    • 1
  • Alanna Ritchie
    • 1
  • Nicholas L. Baird
    • 1
  • Jeffrey L. Bennett
    • 1
    • 2
    • 3
  • Gregory P. Owens
    • 1
  1. 1.Department of NeurologyUniversity of Colorado DenverAuroraUSA
  2. 2.Neuroscience ProgramUniversity of Colorado DenverAuroraUSA
  3. 3.Department of OphthalmologyUniversity of Colorado DenverAuroraUSA

Personalised recommendations