Acta Neuropathologica

, Volume 130, Issue 5, pp 661–678 | Cite as

Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS

  • Yazi D. Ke
  • Annika van Hummel
  • Claire H. Stevens
  • Amadeus Gladbach
  • Stefania Ippati
  • Mian Bi
  • Wei S. Lee
  • Sarah Krüger
  • Julia van der Hoven
  • Alexander Volkerling
  • Andre Bongers
  • Glenda Halliday
  • Nikolas K. Haass
  • Matthew Kiernan
  • Fabien Delerue
  • Lars M. IttnerEmail author
Original Paper


The nuclear transactive response DNA-binding protein 43 (TDP-43) undergoes relocalization to the cytoplasm with formation of cytoplasmic deposits in neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Pathogenic mutations in the TDP-43-encoding TARDBP gene in familial ALS as well as non-mutant human TDP-43 have been utilized to model FTD/ALS in cell culture and animals, including mice. Here, we report novel A315T mutant TDP-43 transgenic mice, iTDP-43 A315T , with controlled neuronal over-expression. Constitutive expression of human TDP-43 A315T resulted in pronounced early-onset and progressive neurodegeneration, which was associated with compromised motor performance, spatial memory and disinhibition. Muscle atrophy resulted in reduced grip strength. Cortical degeneration presented with pronounced astrocyte activation. Using differential protein extraction from iTDP-43 A315T brains, we found cytoplasmic localization, fragmentation, phosphorylation and ubiquitination and insolubility of TDP-43. Surprisingly, suppression of human TDP-43 A315T expression in mice with overt neurodegeneration for only 1 week was sufficient to significantly improve motor and behavioral deficits, and reduce astrogliosis. Our data suggest that functional deficits in iTDP-43 A315T mice are at least in part a direct and transient effect of the presence of TDP-43 A315T . Furthermore, it illustrates the compensatory capacity of compromised neurons once transgenic TDP-43 is removed, with implications for future treatments.


TDP-43 Frontotemporal lobar degeneration Amyotrophic lateral sclerosis Mouse model Pathogenic mutation 



The authors like to thank the staff of the Biological Resources Centre Wallace Wurth for animal care. We also thank Prof Virginia Lee for anti mouse TDP-43 antibodies. This work has been supported by the National Health & Medical Research Council (NHMRC; #1081916, #1020562), the NHMRC Forefront Program grant (#1037746) and the Australian Research Council (ARC; #DP1096674, #DP130102027), Motor Neuron Disease Australia and the University of New South Wales. Y.D.K. is an ARC DECRA fellow (DE130101591). G.M.H. is an NHMRC Senior Principal Research Fellow (#1079679). L.M.I. is an NHMRC Senior Research Fellow (#1003083).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

401_2015_1486_MOESM1_ESM.pdf (124 kb)
Pole test deficits in 3 month-old iTDP-43 A315T mice. Vertical pole test: Both 3 month-old mThy1.2-tTA(6)/pTRE-TDP-43 A315T (13) and mThy1.2-tTA(15)/pTRE-TDP-43 A315T (13) mice required significantly more time to reach the bottom when placed at the top of the pole, as compared to single transgenic mThy1.2-tTA(15), mThy1.2-tTA(6) and pTRE-TDP-43 A315T (13), and non-transgenic (non-tg) control mice (***, P < 0.001, n = 14 (non-tg), n = 14 (pTRE-TDP-43 A315T (13)), n = 6 (pTRE-TDP-43 A315T (6)), n = 9 (mThy1.2-tTA(15)), n = 7 (mThy1.2-tTA(6)/pTRE-TDP-43 A315T (13)), n = 10 (mThy1.2-tTA(15)/pTRE-TDP-43 A315T (13)))
401_2015_1486_MOESM2_ESM.pdf (159 kb)
No overt microglial activation in iTDP-43 A315T mice. Numbers and appearance of IBA-1-positive (green) microglia was indistinguishable in the cortex and hippocampus of mThy1.2-tTA(6)/pTRE-TDP-43 A315T (13) iTDP-43 A315T and single transgenic pTRE-TDP-43 A315T (13) control (ctr) mice at 4.5 months of age. Human TDP-43 (hTDP-43) staining showed transgene expression in iTDP-43 A315T mice. Scale bars, 100 µm


  1. 1.
    Alfieri JA, Pino NS, Igaz LM (2014) Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci 34:15244–15259. doi: 10.1523/JNEUROSCI.1918-14.2014 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919CrossRefPubMedGoogle Scholar
  3. 3.
    Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q, Li F, Xu Z, Bowser R, Xia XG et al (2013) Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci USA 110:4069–4074. doi: 10.1073/pnas.1218497110 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Buratti E, Baralle FE (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276:36337–36343. doi: 10.1074/jbc.M104236200 CrossRefPubMedGoogle Scholar
  5. 5.
    Cannon A, Yang B, Knight J, Farnham IM, Zhang Y, Wuertzer CA, D’Alton S, Lin WL, Castanedes-Casey M, Rousseau L et al (2012) Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction. Acta Neuropathol 123:807–823. doi: 10.1007/s00401-012-0979-3 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Chare L, Hodges JR, Leyton CE, McGinley C, Tan RH, Kril JJ, Halliday GM (2014) New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J Neurol Neurosurg Psychiatry 85:865–870. doi: 10.1136/jnnp-2013-306948 CrossRefPubMedGoogle Scholar
  7. 7.
    Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924CrossRefPubMedGoogle Scholar
  8. 8.
    D’Alton S, Altshuler M, Cannon A, Dickson DW, Petrucelli L, Lewis J (2014) Divergent phenotypes in mutant TDP-43 transgenic mice highlight potential confounds in TDP-43 transgenic modeling. PLoS One 9:e86513. doi: 10.1371/journal.pone.0086513 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. doi: 10.1016/j.neuron.2011.09.011 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Delerue F, White M, Ittner LM (2014) Inducible, tightly regulated and non-leaky neuronal gene expression in mice. Transgenic Res 23:225–233. doi: 10.1007/s11248-013-9767-7 CrossRefPubMedGoogle Scholar
  11. 11.
    Esmaeili MA, Panahi M, Yadav S, Hennings L, Kiaei M (2013) Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int J Exp Pathol 94:56–64. doi: 10.1111/iep.12006 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Graham A, Davies R, Xuereb J, Halliday G, Kril J, Creasey H, Graham K, Hodges J (2005) Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain 128:597–605. doi: 10.1093/brain/awh348 CrossRefPubMedGoogle Scholar
  13. 13.
    Guillemin I, Becker M, Ociepka K, Friauf E, Nothwang HG (2005) A subcellular prefractionation protocol for minute amounts of mammalian cell cultures and tissue. Proteomics 5:35–45. doi: 10.1002/pmic.200400892 CrossRefPubMedGoogle Scholar
  14. 14.
    Guo Y, Wang Q, Zhang K, An T, Shi P, Li Z, Duan W, Li C (2012) HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res 1460:88–95. doi: 10.1016/j.brainres.2012.04.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, Beach TG, Buratti E, Baralle F, Morita M et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Hatzipetros T, Bogdanik LP, Tassinari VR, Kidd JD, Moreno AJ, Davis C, Osborne M, Austin A, Vieira FG, Lutz C et al (2014) C57BL/6 J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Res 1584:59–72. doi: 10.1016/j.brainres.2013.10.013 CrossRefPubMedGoogle Scholar
  17. 17.
    Hodges JR, Davies RR, Xuereb JH, Casey B, Broe M, Bak TH, Kril JJ, Halliday GM (2004) Clinicopathological correlates in frontotemporal dementia. Ann Neurol 56:399–406. doi: 10.1002/ana.20203 CrossRefPubMedGoogle Scholar
  18. 18.
    Hornberger M, Piguet O, Graham AJ, Nestor PJ, Hodges JR (2010) How preserved is episodic memory in behavioral variant frontotemporal dementia? Neurology 74:472–479. doi: 10.1212/WNL.0b013e3181cef85d PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hornberger M, Wong S, Tan R, Irish M, Piguet O, Kril J, Hodges JR, Halliday G (2012) In vivo and post-mortem memory circuit integrity in frontotemporal dementia and Alzheimer’s disease. Brain 135:3015–3025. doi: 10.1093/brain/aws239 CrossRefPubMedGoogle Scholar
  20. 20.
    Huang C, Tong J, Bi F, Zhou H, Xia XG (2012) Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest 122:107–118. doi: 10.1172/JCI59130 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Igaz LM, Kwong LK, Lee EB, Chen-Plotkin A, Swanson E, Unger T, Malunda J, Xu Y, Winton MJ, Trojanowski JQ et al (2011) Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121:726–738. doi: 10.1172/JCI44867 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Inukai Y, Nonaka T, Arai T, Yoshida M, Hashizume Y, Beach TG, Buratti E, Baralle FE, Akiyama H, Hisanaga S et al (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett 582:2899–2904CrossRefPubMedGoogle Scholar
  23. 23.
    Ittner LM, Gotz J (2007) Pronuclear injection for the production of transgenic mice. Nat Protoc 2:1206–1215CrossRefPubMedGoogle Scholar
  24. 24.
    Ittner LM, Halliday GM, Kril JJ, Gotz J, Hodges JR, Kiernan MC (2015) FTD and ALS-translating mouse studies into clinical trials. Nat Rev Neurol. doi: 10.1038/nrneurol.2015.65 PubMedGoogle Scholar
  25. 25.
    Ittner LM, Ke YD, Gotz J (2009) Phosphorylated tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J Biol Chem 284:20909–20916. doi: 10.1074/jbc.M109.014472 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Ittner LM, Koller D, Muff R, Fischer JA, Born W (2005) The N-terminal extracellular domain 23-60 of the calcitonin receptor-like receptor in chimeras with the parathyroid hormone receptor mediates association with receptor activity-modifying protein 1. Biochemistry 44:5749–5754CrossRefPubMedGoogle Scholar
  27. 27.
    Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, Petersen RC, Dickson DW (2014) Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol 127:441–450. doi: 10.1007/s00401-013-1211-9 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574CrossRefPubMedGoogle Scholar
  29. 29.
    Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438. doi: 10.1016/j.neuron.2013.07.033 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437. doi: 10.1038/nrn2151 CrossRefPubMedGoogle Scholar
  31. 31.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133CrossRefPubMedGoogle Scholar
  32. 32.
    Ohta Y, Tremblay C, Schneider JA, Bennett DA, Calon F, Julien JP (2014) Interaction of transactive response DNA binding protein 43 with nuclear factor kappaB in mild cognitive impairment with episodic memory deficits. Acta Neuropathol Commun 2:37. doi: 10.1186/2051-5960-2-37 PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. doi: 10.1016/j.neuron.2011.09.010 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Roberson ED (2012) Mouse models of frontotemporal dementia. Ann Neurol 72:837–849. doi: 10.1002/ana.23722 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Rohrer JD (2011) Behavioural variant frontotemporal dementia—defining genetic and pathological subtypes. J Mol Neurosci 45:583–588. doi: 10.1007/s12031-011-9542-2 CrossRefPubMedGoogle Scholar
  36. 36.
    Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C, Siller R, Burr K, Haghi G, Story D, Nishimura AL et al (2013) Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci USA 110:4697–4702. doi: 10.1073/pnas.1300398110 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Stallings NR, Puttaparthi K, Luther CM, Burns DK, Elliott JL (2010) Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis 40:404–414. doi: 10.1016/j.nbd.2010.06.017 CrossRefPubMedGoogle Scholar
  38. 38.
    Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, Julien JP (2011) Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134:2610–2626. doi: 10.1093/brain/awr159 CrossRefPubMedGoogle Scholar
  39. 39.
    Tsai KJ, Yang CH, Fang YH, Cho KH, Chien WL, Wang WT, Wu TW, Lin CP, Fu WM, Shen CK (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673. doi: 10.1084/jem.20092164 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, Clay D, Wood EM, Chen-Plotkin AS, Martinez-Lage M et al (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7:409–416PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Gotz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci USA 107:13888–13893. doi: 10.1073/pnas.1009038107 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    van Eersel J, Stevens CH, Przybyla M, Gladbach A, Stefanoska K, Chan CK, Ong WY, Hodges JR, Sutherland GT, Kril JJ et al (2015) Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. doi: 10.1111/nan.12233 PubMedGoogle Scholar
  43. 43.
    Vanden Broeck L, Callaerts P, Dermaut B (2014) TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol Med 20:66–71. doi: 10.1016/j.molmed.2013.11.003 CrossRefPubMedGoogle Scholar
  44. 44.
    Walker AK, Spiller KJ, Ge G, Zheng A, Xu Y, Zhou M, Tripathy K, Kwong LK, Trojanowski JQ, Lee VM (2015) Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol. doi: 10.1007/s00401-015-1460-x Google Scholar
  45. 45.
    Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814. doi: 10.1073/pnas.0908767106 PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I, Smits V, Ceuterick-de Groote C, Van Broeckhoven C, Kumar-Singh S (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3858–3863. doi: 10.1073/pnas.0912417107 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Wilson RS, Yu L, Trojanowski JQ, Chen EY, Boyle PA, Bennett DA, Schneider JA (2013) TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol 70:1418–1424. doi: 10.1001/jamaneurol.2013.3961 CrossRefPubMedGoogle Scholar
  48. 48.
    Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VM (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 283:13302–13309PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yazi D. Ke
    • 1
    • 2
  • Annika van Hummel
    • 1
    • 2
  • Claire H. Stevens
    • 1
  • Amadeus Gladbach
    • 1
  • Stefania Ippati
    • 1
  • Mian Bi
    • 1
  • Wei S. Lee
    • 1
  • Sarah Krüger
    • 1
  • Julia van der Hoven
    • 1
  • Alexander Volkerling
    • 1
  • Andre Bongers
    • 3
  • Glenda Halliday
    • 4
  • Nikolas K. Haass
    • 5
  • Matthew Kiernan
    • 6
  • Fabien Delerue
    • 1
    • 7
  • Lars M. Ittner
    • 1
    • 4
    • 7
    Email author
  1. 1.Dementia Research Unit, Department of Anatomy, Faculty of Medicine, School of Medical SciencesUNSW AustraliaSydneyAustralia
  2. 2.Motor Neuron Disease Unit, Department of Anatomy, Faculty of Medicine, School of Medical SciencesUNSW AustraliaSydneyAustralia
  3. 3.Biological Resources Imaging Laboratory, Mark Wainwright Analytical CentreUNSW AustraliaSydneyAustralia
  4. 4.Neuroscience Research AustraliaSydneyAustralia
  5. 5.The University of Queensland Diamantina Institute, Translational Research InstituteThe University of QueenslandBrisbaneAustralia
  6. 6.Brain and Mind Research Institute, Faculty of Medicine, Sydney Medical SchoolThe University of SydneySydneyAustralia
  7. 7.Transgenic Animal Unit, Mark Wainwright Analytical CentreUNSW AustraliaSydneyAustralia

Personalised recommendations