Advertisement

Acta Neuropathologica

, Volume 130, Issue 6, pp 845–861 | Cite as

Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers

  • Ian R. A. Mackenzie
  • Petra Frick
  • Friedrich A. Grässer
  • Tania F. Gendron
  • Leonard Petrucelli
  • Neil R. Cashman
  • Dieter Edbauer
  • Elisabeth Kremmer
  • Johannes Prudlo
  • Dirk Troost
  • Manuela NeumannEmail author
Original Paper

Abstract

Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of frontotemporal dementia and motor neuron disease. One consequence of the mutation is the formation of different potentially toxic polypeptides composed of dipeptide repeats (DPR) (poly-GA, -GP, -GR, -PA, -PR) generated by repeat-associated non-ATG (RAN) translation. While previous studies focusing on poly-GA pathology have failed to detect any clinico-pathological correlations in C9ORF72 mutation cases, recent data from animal and cell culture models suggested that it may be only specific DPR species that are toxic and only when accumulated in certain intracellular compartments. Therefore, we performed a systematic clinico-pathological correlative analysis with counting of actual numbers of distinct types of inclusion (neuronal cytoplasmic and intranuclear inclusions, dystrophic neurites) for each DPR protein in relevant brain regions (premotor cortex, lower motor neurons) in a cohort of 35 C9ORF72 mutation cases covering the clinical spectrum from those with pure MND, mixed FTD/MND and pure FTD. While each DPR protein pathology had a similar pattern of anatomical distribution, the total amount of inclusions for each DPR protein varied remarkably (poly-GA > GP > GR > PR/PA), indicating that RAN translation seems to be more effective from sense than from antisense transcripts. Importantly, with the exception of moderate associations for the amount of poly-GA-positive dystrophic neurites with degeneration in the frontal cortex and total burden of poly-GA pathology with disease onset, no relationship was identified for any other DPR protein pathology with degeneration or phenotype. Biochemical analysis revealed a close correlation between insoluble DPR protein species and numbers of visible inclusions, while we did not find any evidence for the presence of soluble DPR protein species. Thus, overall our findings strongly argue against a role of DPR protein aggregation as major and exclusive pathomechanism in C9ORF72 pathogenesis. However, this does not exclude that DPR protein formation might be essential in C9ORF72 pathogenesis in interplay with other consequences associated with the C9ORF72 repeat expansion.

Keywords

Antisense Transcript Motor Neuron Disease Lower Motor Neuron Dystrophic Neurites Neuronal Cytoplasmic Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Margaret Luk, Katrin Trautmann and Manuel Gödan for their excellent technical assistance. This work was supported by the German Helmholtz Association (VH-VI-510 and W2/W3-036, MN), the Canadian Institutes of Health Research (74580, IRM), the Pacific Alzheimer’s Research Foundation (C06-01, IRM), and the European Unions’s Seventh Framework Program (FP7/2014-2019 Grant 617198, DE).

Supplementary material

401_2015_1476_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1322 kb)

References

  1. 1.
    Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646. doi: 10.1016/j.neuron.2013.02.004 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Boeve BF, Boylan KB, Graff-Radford NR, DeJesus-Hernandez M, Knopman DS, Pedraza O et al (2012) Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 135:765–783. doi: 10.1093/brain/aws004 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Cairns NJ, Neumann M, Bigio EH, Holm IE, Troost D, Hatanpaa KJ et al (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 171:227–240PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Cooper-Knock J, Hewitt C, Highley JR, Brockington A, Milano A, Man S et al (2012) Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain 135:751–764. doi: 10.1093/brain/awr365 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Cooper-Knock J, Higginbottom A, Stopford MJ, Highley JR, Ince PG, Wharton SB et al (2015) Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol 130:63–75. doi: 10.1007/s00401-015-1429-9 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Davidson YS, Barker H, Robinson AC, Thompson JC, Harris J, Troakes C et al (2014) Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 2:70. doi: 10.1186/2051-5960-2-70 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. doi: 10.1016/j.neuron.2011.09.011 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Gendron TF, Bieniek KF, Zhang YJ, Jansen-West K, Ash PE, Caulfield T et al (2013) Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 126:829–844. doi: 10.1007/s00401-013-1192-8 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Gendron TF, Belzil VV, Zhang YJ, Petrucelli L (2014) Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol 127:359–376. doi: 10.1007/s00401-013-1237-z PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G et al (2012) A C9orf72 promoter repeat expansion in a Flanders–Belgian cohort with disorders of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65. doi: 10.1016/S1474-4422(11)70261-7 CrossRefPubMedGoogle Scholar
  11. 11.
    Gomez-Deza J, Lee YB, Troakes C, Nolan M, Al-Sarraj S, Gallo JM et al (2015) Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration. Acta Neuropathol Commun 3:38. doi: 10.1186/s40478-015-0218-y PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Hsiung GY, DeJesus-Hernandez M, Feldman HH, Sengdy P, Bouchard-Kerr P, Dwosh E et al (2012) Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain 135:709–722. doi: 10.1093/brain/awr354 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T et al (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345:1139–1145. doi: 10.1126/science.1254917 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR et al (2013) Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci USA 110:E4530–E4539. doi: 10.1073/pnas.1318835110 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779. doi: 10.1038/nature05290 CrossRefPubMedGoogle Scholar
  16. 16.
    Liu EY, Russ J, Wu K, Neal D, Suh E, McNally AG et al (2014) C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol 128:525–541. doi: 10.1007/s00401-014-1286-y PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434. doi: 10.1002/ana.21147 CrossRefPubMedGoogle Scholar
  18. 18.
    Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007. doi: 10.1016/S1474-4422(10)70195-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Mackenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K et al (2013) Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 126:859–879. doi: 10.1007/s00401-013-1181-y CrossRefPubMedGoogle Scholar
  20. 20.
    Mackenzie IR, Frick P, Neumann M (2014) The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol 127:347–357. doi: 10.1007/s00401-013-1232-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Mahoney CJ, Beck J, Rohrer JD, Lashley T, Mok K, Shakespeare T et al (2012) Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain 135:736–750. doi: 10.1093/brain/awr361 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Mann DM, Rollinson S, Robinson A, Bennion Callister J, Thompson JC, Snowden JS et al (2013) Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 1:68. doi: 10.1186/2051-5960-1-68 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    May S, Hornburg D, Schludi MH, Arzberger T, Rentzsch K, Schwenk BM et al (2014) C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 128:485–503. doi: 10.1007/s00401-014-1329-4 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Mizielinska S, Lashley T, Norona FE, Clayton EL, Ridler CE, Fratta P et al (2013) C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 126:845–857. doi: 10.1007/s00401-013-1200-z PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Mizielinska S, Gronke S, Niccoli T, Ridler CE, Clayton EL, Devoy A et al (2014) C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345:1192–1194. doi: 10.1126/science.1256800 CrossRefPubMedGoogle Scholar
  26. 26.
    Mizielinska S, Isaacs AM (2014) C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function? Curr Opin Neurol 27:515–523. doi: 10.1097/WCO.0000000000000130 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Mori K, Arzberger T, Grasser FA, Gijselinck I, May S, Rentzsch K et al (2013) Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 126:881–893. doi: 10.1007/s00401-013-1189-3 CrossRefPubMedGoogle Scholar
  28. 28.
    Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338. doi: 10.1126/science.1232927 CrossRefPubMedGoogle Scholar
  29. 29.
    Murray ME, Dejesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR et al (2011) Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122:673–690. doi: 10.1007/s00401-011-0907-y PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. doi: 10.1126/science.1134108 CrossRefPubMedGoogle Scholar
  31. 31.
    Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149. doi: 10.1007/s00401-008-0477-9 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Neumann M (2013) Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: molecular similarities and differences. Rev Neurol (Paris) 169:793–798. doi: 10.1016/j.neurol.2013.07.019 CrossRefGoogle Scholar
  33. 33.
    Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. doi: 10.1016/j.neuron.2011.09.010 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Schludi MH, May S, Grasser FA, Rentzsch K, Kremmer E, Kupper C et al (2015) Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol. doi: 10.1007/s00401-015-1450-z PubMedCentralGoogle Scholar
  35. 35.
    Simon-Sanchez J, Dopper EG, Cohn-Hokke PE, Hukema RK, Nicolaou N, Seelaar H et al (2012) The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 135:723–735. doi: 10.1093/brain/awr353 CrossRefPubMedGoogle Scholar
  36. 36.
    Snowden JS, Rollinson S, Thompson JC, Harris JM, Stopford CL, Richardson AM et al (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135:693–708. doi: 10.1093/brain/awr355 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Stewart H, Rutherford NJ, Briemberg H, Krieger C, Cashman N, Fabros M et al (2012) Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p. Acta Neuropathol 123:409–417. doi: 10.1007/s00401-011-0937-5 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang WY et al (2014) Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 83:1043–1050. doi: 10.1016/j.neuron.2014.07.041 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Tao Z, Wang H, Xia Q, Li K, Li K, Jiang X et al (2015) Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet 24:2426–2441. doi: 10.1093/hmg/ddv005 CrossRefPubMedGoogle Scholar
  40. 40.
    Treusch S, Cyr DM, Lindquist S (2009) Amyloid deposits: protection against toxic protein species? Cell Cycle 8:1668–1674PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Troakes C, Maekawa S, Wijesekera L, Rogelj B, Siklos L, Bell C et al (2012) An MND/ALS phenotype associated with C9orf72 repeat expansion: abundant p62-positive, TDP-43-negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline. Neuropathology 32:505–514. doi: 10.1111/j.1440-1789.2011.01286.x CrossRefPubMedGoogle Scholar
  42. 42.
    Wen X, Tan W, Westergard T, Krishnamurthy K, Markandaiah SS, Shi Y et al (2014) Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84:1213–1225. doi: 10.1016/j.neuron.2014.12.010 CrossRefPubMedGoogle Scholar
  43. 43.
    Wojciechowska M, Olejniczak M, Galka-Marciniak P, Jazurek M, Krzyzosiak WJ (2014) RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders. Nucleic Acids Res 42:11849–11864. doi: 10.1093/nar/gku794 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Xu G, Gonzales V, Borchelt DR (2002) Rapid detection of protein aggregates in the brains of Alzheimer patients and transgenic mouse models of amyloidosis. Alzheimer Dis Assoc Disord 16:191–195CrossRefPubMedGoogle Scholar
  45. 45.
    Yang D, Abdallah A, Li Z, Lu Y, Almeida S, Gao FB (2015) FTD/ALS-associated poly(GR) protein impairs the Notch pathway and is recruited by poly(GA) into cytoplasmic inclusions. Acta Neuropathol. doi: 10.1007/s00401-015-1448-6 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Zhang YJ, Jansen-West K, Xu YF, Gendron TF, Bieniek KF, Lin WL et al (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128:505–524. doi: 10.1007/s00401-014-1336-5 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J et al (2013) RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci USA 110:E4968–E4977. doi: 10.1073/pnas.1315438110 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ian R. A. Mackenzie
    • 1
  • Petra Frick
    • 2
  • Friedrich A. Grässer
    • 3
  • Tania F. Gendron
    • 4
  • Leonard Petrucelli
    • 4
  • Neil R. Cashman
    • 5
  • Dieter Edbauer
    • 6
    • 7
    • 8
  • Elisabeth Kremmer
    • 7
    • 9
  • Johannes Prudlo
    • 10
    • 11
  • Dirk Troost
    • 12
  • Manuela Neumann
    • 2
    • 13
    Email author
  1. 1.Department of PathologyUniversity of British Columbia and Vancouver General HospitalVancouverCanada
  2. 2.German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
  3. 3.Institute of VirologySaarland University Medical SchoolHomburgGermany
  4. 4.Department of NeuroscienceMayo Clinic FloridaJacksonvilleUSA
  5. 5.Department of Medicine (Neurology), Brain Research CentreUniversity of British ColumbiaVancouverCanada
  6. 6.German Center for Neurodegenerative Diseases (DZNE)MunichGermany
  7. 7.Munich Cluster of Systems Neurology (SyNergy)MunichGermany
  8. 8.Institute for Metabolic BiochemistryLudwig-Maximilians University MunichMunichGermany
  9. 9.Institute of Molecular ImmunologyHelmholtz Zentrum MünchenMunichGermany
  10. 10.German Center for Neurodegenerative Diseases (DZNE)RostockGermany
  11. 11.Department of NeurologyUniversity of RostockRostockGermany
  12. 12.Department of Neuropathology, Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
  13. 13.Department of NeuropathologyUniversity of TübingenTübingenGermany

Personalised recommendations