Acta Neuropathologica

, Volume 130, Issue 2, pp 247–261 | Cite as

Non-steroidal anti-inflammatory drug indometacin enhances endogenous remyelination

  • Anna Preisner
  • Stefanie Albrecht
  • Qiao-Ling Cui
  • Stephanie Hucke
  • Julia Ghelman
  • Christine Hartmann
  • Makoto Mark Taketo
  • Jack Antel
  • Luisa Klotz
  • Tanja Kuhlmann
Original Paper


Multiple sclerosis is the most frequent demyelinating disease in the CNS that is characterized by inflammatory demyelinating lesions and axonal loss, the morphological correlate of permanent clinical disability. Remyelination does occur, but is limited especially in chronic disease stages. Despite effective immunomodulatory therapies that reduce the number of relapses the progressive disease phase cannot be prevented. Therefore, promotion of neuroprotective and repair mechanisms, such as remyelination, represents an attractive additional treatment strategy. A number of pathways have been identified that may contribute to impaired remyelination in MS lesions, among them the Wnt/β-catenin pathway. Here, we demonstrate that indometacin, a non-steroidal anti-inflammatory drug (NSAID) that has been also shown to modulate the Wnt/β-catenin pathway in colorectal cancer cells promotes differentiation of primary human and murine oligodendrocytes, myelination of cerebellar slice cultures and remyelination in cuprizone-induced demyelination. Our in vitro experiments using GSK3β inhibitors, luciferase reporter assays and oligodendrocytes expressing a mutant, dominant stable β-catenin indicate that the mechanism of action of indometacin depends on GSK3β activity and β-catenin phosphorylation. Indometacin might represent a promising treatment option to enhance endogenous remyelination in MS patients.


Multiple sclerosis Oligodendrocytes Remyelination Indometacin β-Catenin GSK3β 



This study was supported by grants from the German Research Foundation (SFB-TR128-B7; Ku1477/6-1), the Interdisciplinary Clinical Research Center, Münster (IZKF; KuT3/006/11) and the Hertie Foundation (P1130073) to TK.

Supplementary material

401_2015_1426_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (PDF 2421 kb)


  1. 1.
    Angers Sand Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468–477CrossRefGoogle Scholar
  2. 2.
    Atkins Hand Freedman M (2009) Immune ablation followed by autologous hematopoietic stem cell transplantation for the treatment of poor prognosis multiple sclerosis. Methods Mol Biol 549:231–246CrossRefGoogle Scholar
  3. 3.
    Azim Kand Butt AM (2011) GSK3beta negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59:540–553CrossRefGoogle Scholar
  4. 4.
    Blakemore WF (1973) Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J Neurol Sci 20:63–72PubMedCrossRefGoogle Scholar
  5. 5.
    Chen J, Zuo S, Wang J, Huang J, Zhang X, Liu Y, Zhang Y, Zhao J, Han J, Xiong L, Shi M, Liu Z (2014) Aspirin promotes oligodendrocyte precursor cell proliferation and differentiation after white matter lesion. Front Aging Neurosci 6:7PubMedCentralPubMedGoogle Scholar
  6. 6.
    Chen JT, Collins DL, Atkins HL, Freedman MS, Arnold DL (2008) Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 63:254–262PubMedCrossRefGoogle Scholar
  7. 7.
    Chew LJ, Shen W, Ming X, Senatorov VV Jr, Chen HL, Cheng Y, Hong E, Knoblach S, Gallo V (2011) SRY-box containing gene 17 regulates the Wnt/beta-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci 31:13921–13935PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Cui QL, D’Abate L, Fang J, Leong SY, Ludwin S, Kennedy TE, Antel J, Almazan G (2012) Human fetal oligodendrocyte progenitor cells from different gestational stages exhibit substantially different potential to myelinate. Stem Cells Dev 21:1831–1837PubMedCrossRefGoogle Scholar
  9. 9.
    Dai ZM, Sun S, Wang C, Huang H, Hu X, Zhang Z, Lu QR, Qiu M (2014) Stage-specific regulation of oligodendrocyte development by Wnt/beta-catenin signaling. J Neurosci 34:8467–8473PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ, Padmanabhan K, Swoboda JG, Ahmad I, Kondo T, Gage FH, Theofilopoulos AN, Lawson BR, Schultz PG, Lairson LL (2013) A regenerative approach to the treatment of multiple sclerosis. Nature 502:327–332PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dihlmann S, Klein S, Doeberitz Mv MK (2003) Reduction of beta-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated beta-catenin. Mol Cancer Ther 2:509–516PubMedGoogle Scholar
  12. 12.
    Dihlmann S, Siermann A, von Knebel DM (2001) The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene 20:645–653PubMedCrossRefGoogle Scholar
  13. 13.
    Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD (2009) Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci USA 106:6832–6836PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, Ha JR, Kahn M (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 101:12682–12687PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Fancy SP, Harrington EP, Baranzini SE, Silbereis JC, Shiow LR, Yuen TJ, Huang EJ, Lomvardas S, Rowitch DH (2014) Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nat Neurosci 17:506–512PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R, Franklin RJ, Rowitch DH (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, Franklin RJ (2010) Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol 225(1):18–23PubMedCrossRefGoogle Scholar
  20. 20.
    Feigenson K, Reid M, See J, Crenshaw EB III, Grinspan JB (2009) Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 42:255–265PubMedCrossRefGoogle Scholar
  21. 21.
    Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714PubMedCrossRefGoogle Scholar
  22. 22.
    Franklin RJ, Ffrench-Constant C, Edgar JM, Smith KJ (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8:624–634PubMedCrossRefGoogle Scholar
  23. 23.
    Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Goldschmidt T, Antel J, Konig FB, Brück W, Kuhlmann T (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72:1914–1921PubMedCrossRefGoogle Scholar
  25. 25.
    Guo Q, Wu M, Lian P, Liao M, Xiao Z, Wang X, Shen S (2009) Synergistic effect of indomethacin and NGX6 on proliferation and invasion by human colorectal cancer cells through modulation of the Wnt/beta-catenin signaling pathway. Mol Cell Biochem 330:71–81PubMedCrossRefGoogle Scholar
  26. 26.
    Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1081PubMedCrossRefGoogle Scholar
  27. 27.
    Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM (1999) Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 18:5931–5942PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hawcroft G, D’Amico M, Albanese C, Markham AF, Pestell RG, Hull MA (2002) Indomethacin induces differential expression of beta-catenin, gamma-catenin and T-cell factor target genes in human colorectal cancer cells. Carcinogenesis 23:107–114PubMedCrossRefGoogle Scholar
  29. 29.
    Hecht A, Vleminckx K, Stemmler MP, Van RF, Kemler R (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19:1839–1850PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hucke S, Flossdorf J, Grutzke B, Dunay IR, Frenzel K, Jungverdorben J, Linnartz B, Mack M, Peitz M, Brustle O, Kurts C, Klockgether T, Neumann H, Prinz M, Wiendl H, Knolle P, Klotz L (2012) Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor gamma. Brain 135:1586–1605PubMedCrossRefGoogle Scholar
  31. 31.
    Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477PubMedCrossRefGoogle Scholar
  32. 32.
    Jung M, Crang AJ, Blakemore WF, Hoppe D, Kettenmann H, Trotter J (1994) In vitro and in vivo characterisation of glial cells immortalised with a temperature sensitive SV40 T antigen-containing retrovirus. J Neurosci Res 37:182–196PubMedCrossRefGoogle Scholar
  33. 33.
    Kimelman Dand XuW (2006) beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482–7491CrossRefGoogle Scholar
  34. 34.
    Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis. A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kremer D, Aktas O, Hartung HP, Kury P (2011) The complex world of oligodendroglial differentiation inhibitors. Ann Neurol 69:602–618PubMedCrossRefGoogle Scholar
  36. 36.
    Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212PubMedCrossRefGoogle Scholar
  37. 37.
    Lock C, Hermans G, Pedotti R, Brendalon A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med 8:500–508PubMedCrossRefGoogle Scholar
  38. 38.
    Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMedCrossRefGoogle Scholar
  39. 39.
    Manders E, Verbeeck F, Aten J (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382CrossRefGoogle Scholar
  40. 40.
    Manrique-Hoyos N, Jurgens T, Gronborg M, Kreutzfeldt M, Schedensack M, Kuhlmann T, Schrick C, Bruck W, Urlaub H, Simons M, Merkler D (2012) Late motor decline after accomplished remyelination: impact for progressive multiple sclerosis. Ann Neurol 71:227–244PubMedCrossRefGoogle Scholar
  41. 41.
    Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L, Su H, Chu TH, Guo J, Zhang W, So KF, Pepinsky B, Shao Z, Graff C, Garber E, Jung V, Wu EX, Wu W (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13:1228–1233PubMedCrossRefGoogle Scholar
  42. 42.
    Mi S, Miller RH, Lee X, Scott M, Shulag-Morsakaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp B, He Z, Jung V, McCoy J, Pepinsky R (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745–751PubMedCrossRefGoogle Scholar
  43. 43.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, Van WP, Wagers AJ, Williams A, Franklin RJ, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Bruck W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–499PubMedCrossRefGoogle Scholar
  45. 45.
    Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33:277–287PubMedCrossRefGoogle Scholar
  46. 46.
    Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidtbauer M, Laursen H, Sorensen P, Brück W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172PubMedCrossRefGoogle Scholar
  47. 47.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45CrossRefGoogle Scholar
  48. 48.
    Remington LT, Babcock AA, Zehntner SP, Owens T (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170:1713–1724PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Rodriguez JP, Coulter M, Miotke J, Meyer RL, Takemaru K, Levine JM (2014) Abrogation of beta-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury. J Neurosci 34:10285–10297PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Sorbara CD, Wagner NE, Ladwig A, Nikic I, Merkler D, Kleele T, Marinkovic P, Naumann R, Godinho L, Bareyre FM, Bishop D, Misgeld T, Kerschensteiner M (2014) Pervasive axonal transport deficits in multiple sclerosis models. Neuron 84:1183–1190PubMedCrossRefGoogle Scholar
  51. 51.
    Tait S, Gunn-Moore F, Collinson JM, Huang J, Lubetzki C, Pedraza L, Sherman DL, Colman DR, Brophy PJ (2000) An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol 150:657–666PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Takemaru KI, Moon RT (2000) The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 149:249–254PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Tallantyre EC, Bo L, Al-Rawashdeh O, Owens T, Polman CH, Lowe JS, Evangelou N (2010) Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. Mult Scler 16:406–411PubMedCrossRefGoogle Scholar
  54. 54.
    Teo JL, Kahn M (2010) The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev 62:1149–1155PubMedCrossRefGoogle Scholar
  55. 55.
    Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    van Amerongen R (2012) Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol 4:a007914. doi: 10.1101/cshperspect.a007914 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Watkins TA, Emery B, Mulinyawe S, Barres BA (2008) Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60:555–569PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Anna Preisner
    • 1
  • Stefanie Albrecht
    • 1
  • Qiao-Ling Cui
    • 2
  • Stephanie Hucke
    • 3
  • Julia Ghelman
    • 1
  • Christine Hartmann
    • 4
  • Makoto Mark Taketo
    • 5
  • Jack Antel
    • 2
  • Luisa Klotz
    • 3
  • Tanja Kuhlmann
    • 1
  1. 1.Institute of NeuropathologyUniversity Hospital MünsterMünsterGermany
  2. 2.Montreal Neurological InstituteMcGill UniversityMontrealCanada
  3. 3.Department of NeurologyUniversity Hospital MünsterMünsterGermany
  4. 4.Institute of Experimental Musculoskeletal MedicineUniversity Hospital MünsterMünsterGermany
  5. 5.Department of PharmacologyKyoto University Graduate School of Medicine Yoshida- Konoé-choKyotoJapan

Personalised recommendations