Advertisement

Acta Neuropathologica

, Volume 129, Issue 5, pp 669–678 | Cite as

Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers

  • Andrey Korshunov
  • Marina Ryzhova
  • Volker Hovestadt
  • Sebastian Bender
  • Dominik Sturm
  • David Capper
  • Jochen Meyer
  • Daniel Schrimpf
  • Marcel Kool
  • Paul A. Northcott
  • Olga Zheludkova
  • Till Milde
  • Olaf Witt
  • Andreas E. Kulozik
  • Guido Reifenberger
  • Nada Jabado
  • Arie Perry
  • Peter Lichter
  • Andreas von Deimling
  • Stefan M. Pfister
  • David T. W. Jones
Original Paper

Abstract

Pediatric glioblastoma (pedGBM) is amongst the most common malignant brain tumors of childhood and carries a dismal prognosis. In contrast to adult GBM, few molecular prognostic markers for the pediatric counterpart have been established. We, therefore, investigated the prognostic significance of genomic and epigenetic alterations through molecular analysis of 202 pedGBM (1–18 years) with comprehensive clinical annotation. Routinely prepared formalin-fixed paraffin-embedded tumor samples were assessed for genome-wide DNA methylation profiles, with known candidate genes screened for alterations via direct sequencing or FISH. Unexpectedly, a subset of histologically diagnosed GBM (n = 40, 20 %) displayed methylation profiles similar to those of either low-grade gliomas or pleomorphic xanthoastrocytomas (PXA). These tumors showed a markedly better prognosis, with molecularly PXA-like tumors frequently harboring BRAF V600E mutations and 9p21 (CDKN2A) homozygous deletion. The remaining 162 tumors with pedGBM molecular signatures comprised four subgroups: H3.3 G34-mutant (15 %), H3.3/H3.1 K27-mutant (43 %), IDH1-mutant (6 %), and H3/IDH wild-type (wt) GBM (36 %). These subgroups were associated with specific cytogenetic aberrations, MGMT methylation patterns and clinical outcomes. Analysis of follow-up data identified a set of biomarkers feasible for use in risk stratification: pedGBM with any oncogene amplification and/or K27M mutation (n = 124) represents a particularly unfavorable group, with 3-year overall survival (OS) of 5 %, whereas tumors without these markers (n = 38) define a more favorable group (3-year OS ~70 %).Combined with the lower grade-like lesions, almost 40 % of pedGBM cases had distinct molecular features associated with a more favorable outcome. This refined prognostication method for pedGBM using a molecular risk algorithm may allow for improved therapeutic choices and better planning of clinical trial stratification for this otherwise devastating disease.

Keywords

Glioblastoma Pediatric Brain tumor Methylation Prognostic Subgroup Survival CDKN2A BRAF 

Notes

Acknowledgments

For technical support and expertise we thank Andrea Wittmann and Matthias Schick, Roger Fischer and Melanie Bewerunge-Hudler from the DKFZ Genomics and Proteomics Core Facility. This work was principally supported by the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants #01KU1201A, MedSys #0315416C and NGFNplus #01GS0883). Additional support came from the German Cancer Research Center—Heidelberg Center for Personalized Oncology (DKFZ-HIPO) Personalized Oncology Program (POP).

Supplementary material

401_2015_1405_MOESM1_ESM.xlsx (51 kb)
Supplementary material 1 (XLSX 51 kb)
401_2015_1405_MOESM2_ESM.pdf (16.6 mb)
Supplementary material 2 (PDF 16962 kb)
401_2015_1405_MOESM3_ESM.pdf (535 kb)
Supplementary material 3 (PDF 534 kb)
401_2015_1405_MOESM4_ESM.docx (15 kb)
Supplementary material 4 (DOCX 14 kb)
401_2015_1405_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (DOCX 14 kb)
401_2015_1405_MOESM6_ESM.docx (16 kb)
Supplementary material 6 (DOCX 16 kb)
401_2015_1405_MOESM7_ESM.xlsx (11 kb)
Supplementary material 7 (XLSX 11 kb)

References

  1. 1.
    Aihara K, Mukasa A, Gotoh K et al (2014) H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro-oncology 16(1):140–146. doi: 10.1093/neuonc/not144 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Bady P, Sciuscio D, Diserens AC et al (2012) MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 124(4):547–560. doi: 10.1007/s00401-012-1016-2 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Bandopadhayay P, Bergthold G, London WB et al (2014) Long-term outcome of 4040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer 61(7):1173–1179. doi: 10.1002/pbc.24958 CrossRefPubMedGoogle Scholar
  4. 4.
    Bax DA, Mackay A, Little SE et al (2010) A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16(13):3368–3377. doi: 10.1158/1078-0432.CCR-10-0438 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. doi: 10.1016/j.cell.2013.09.034 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Broniscer A, Tatevossian RG, Sabin ND et al (2014) Clinical, radiological, histological and molecular characteristics of paediatric epithelioid glioblastoma. Neuropathol Appl Neurobiol 40(3):327–336. doi: 10.1111/nan.12093 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Buczkowicz P, Hoeman C, Rakopoulos P et al (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46(5):451–456. doi: 10.1038/ng.2936 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Buttarelli FR, Massimino M, Antonelli M et al (2010) Evaluation status and prognostic significance of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in pediatric high grade gliomas. Childs Nerv Syst 26(8):1051–1056. doi: 10.1007/s00381-010-1191-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Ceppa EP, Bouffet E, Griebel R, Robinson C, Tihan T (2007) The pilomyxoid astrocytoma and its relationship to pilocytic astrocytoma: report of a case and a critical review of the entity. J Neurooncol 81(2):191–196. doi: 10.1007/s11060-006-9216-z CrossRefPubMedGoogle Scholar
  10. 10.
    Cohen KJ, Pollack IF, Zhou T et al (2011) Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro-oncology 13(3):317–323. doi: 10.1093/neuonc/noq191 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK (2007) MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer 48(4):403–407. doi: 10.1002/pbc.20803 CrossRefPubMedGoogle Scholar
  12. 12.
    Duffner PK, Horowitz ME, Krischer JP et al (1999) The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro-oncology 1(2):152–161PubMedCentralPubMedGoogle Scholar
  13. 13.
    Faury D, Nantel A, Dunn SE et al (2007) Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol: Off J Am Soc Clin Oncol 25(10):1196–1208. doi: 10.1200/JCO.2006.07.8626 CrossRefGoogle Scholar
  14. 14.
    Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J et al (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46(5):462–466. doi: 10.1038/ng.2950 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Frattini V, Trifonov V, Chan JM et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45(10):1141–1149. doi: 10.1038/ng.2734 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Haque T, Faury D, Albrecht S et al (2007) Gene expression profiling from formalin-fixed paraffin-embedded tumors of pediatric glioblastoma. Clin Cancer Res 13(21):6284–6292. doi: 10.1158/1078-0432.CCR-07-0525 CrossRefPubMedGoogle Scholar
  17. 17.
    Hovestadt V, Remke M, Kool M et al (2013) Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125(6):913–916. doi: 10.1007/s00401-013-1126-5 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Ida CM, Rodriguez FJ, Burger PC et al (2014) Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol. doi: 10.1111/bpa.12217 PubMedGoogle Scholar
  19. 19.
    Jeibmann A, Hasselblatt M, Pfister S et al (2009) From glioblastoma to gangliocytoma: an unforeseen but welcome shift in biological behavior. J Neurosurg Pediatr 4(5):475–478. doi: 10.3171/2009.6.PEDS097 CrossRefPubMedGoogle Scholar
  20. 20.
    Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 14(10):651–661. doi: 10.1038/nrc3811 Google Scholar
  21. 21.
    Jones C, Perryman L, Hargrave D (2012) Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 9(7):400–413. doi: 10.1038/nrclinonc.2012.87 CrossRefPubMedGoogle Scholar
  22. 22.
    Khuong-Quang DA, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447. doi: 10.1007/s00401-012-0998-0 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK (2013) Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 37(5):685–698. doi: 10.1097/PAS.0b013e31827f9c5e CrossRefPubMedGoogle Scholar
  24. 24.
    Koelsche C, Sahm F, Wohrer A et al (2014) BRAF-mutated pleomorphic xanthoastrocytoma is associated with temporal location, reticulin fiber deposition and CD34 expression. Brain Pathol 24(3):221–229. doi: 10.1111/bpa.12111 CrossRefPubMedGoogle Scholar
  25. 25.
    Korshunov A, Sycheva R, Gorelyshev S, Golanov A (2005) Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood. Mod Pathol 18(9):1258–1263. doi: 10.1038/modpathol.3800415 CrossRefPubMedGoogle Scholar
  26. 26.
    Lee JY, Park CK, Park SH, Wang KC, Cho BK, Kim SK (2011) MGMT promoter gene methylation in pediatric glioblastoma: analysis using MS-MLPA. Childs Nerv Syst 27(11):1877–1883. doi: 10.1007/s00381-011-1525-7 CrossRefPubMedGoogle Scholar
  27. 27.
    Lewis PW, Muller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861. doi: 10.1126/science.1232245 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi: 10.1007/s00401-007-0243-4 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Mistry M, Zhukova N, Merico D et al (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol: Off J Am Soc Clin Oncol. doi: 10.1200/JCO.2014.58.3922 Google Scholar
  30. 30.
    Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology 16(Suppl 4):iv1–63. doi: 10.1093/neuonc/nou223 CrossRefPubMedGoogle Scholar
  31. 31.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. doi: 10.1126/science.1164382 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Paugh BS, Broniscer A, Qu C et al (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol: Off J Am Soc Clin Oncol 29(30):3999–4006. doi: 10.1200/JCO.2011.35.5677 CrossRefGoogle Scholar
  33. 33.
    Paugh BS, Qu C, Jones C et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol: Off J Am Soc Clin Oncol 28(18):3061–3068. doi: 10.1200/JCO.2009.26.7252 CrossRefGoogle Scholar
  34. 34.
    Phillips JJ, Aranda D, Ellison DW et al (2013) PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathol 23(5):565–573. doi: 10.1111/bpa.12043 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Pollack IF, Finkelstein SD, Burnham J et al (2001) Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 61(20):7404–7407PubMedGoogle Scholar
  36. 36.
    Puget S, Philippe C, Bax DA et al (2012) Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One 7(2):e30313. doi: 10.1371/journal.pone.0030313 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Qu HQ, Jacob K, Fatet S et al (2010) Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro-oncology 12(2):153–163. doi: 10.1093/neuonc/nop001 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Robinson GW, Orr BA, Gajjar A (2014) Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14:258. doi: 10.1186/1471-2407-14-258 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Schiffman JD, Hodgson JG, VandenBerg SR et al (2010) Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70(2):512–519. doi: 10.1158/0008-5472.CAN-09-1851 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405. doi: 10.1007/s00401-011-0802-6 CrossRefPubMedGoogle Scholar
  41. 41.
    Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231. doi: 10.1038/nature10833 CrossRefPubMedGoogle Scholar
  42. 42.
    Srivastava A, Jain A, Jha P et al (2010) MGMT gene promoter methylation in pediatric glioblastomas. Childs Nerv Syst 26(11):1613–1618. doi: 10.1007/s00381-010-1214-y CrossRefPubMedGoogle Scholar
  43. 43.
    Stokland T, Liu JF, Ironside JW et al (2010) A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702). Neuro-oncology 12(12):1257–1268. doi: 10.1093/neuonc/noq092 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi: 10.1056/NEJMoa043330 CrossRefPubMedGoogle Scholar
  45. 45.
    Sturm D, Bender S, Jones DT et al (2014) Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 14(2):92–107. doi: 10.1038/nrc3655 CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437. doi: 10.1016/j.ccr.2012.08.024 CrossRefPubMedGoogle Scholar
  47. 47.
    Suri V, Das P, Pathak P et al (2009) Pediatric glioblastomas: a histopathological and molecular genetic study. Neuro-oncology 11(3):274–280. doi: 10.1215/15228517-2008-092 CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Taylor KR, Mackay A, Truffaux N et al (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46(5):457–461. doi: 10.1038/ng.2925 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Weber RG, Hoischen A, Ehrler M et al (2007) Frequent loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene 26(7):1088–1097. doi: 10.1038/sj.onc.1209851 CrossRefPubMedGoogle Scholar
  50. 50.
    Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R (2013) Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 14(9):e370–e379. doi: 10.1016/S1470-2045(13)70168-2 CrossRefPubMedGoogle Scholar
  51. 51.
    Weller M, van den Bent M, Hopkins K et al (2014) EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 15(9):e395–e403. doi: 10.1016/S1470-2045(14)70011-7 CrossRefPubMedGoogle Scholar
  52. 52.
    Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253. doi: 10.1038/ng.1102 CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450. doi: 10.1038/ng.2938 CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. doi: 10.1056/NEJMoa0808710 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrey Korshunov
    • 1
    • 2
    • 3
  • Marina Ryzhova
    • 4
  • Volker Hovestadt
    • 5
  • Sebastian Bender
    • 6
  • Dominik Sturm
    • 6
    • 7
  • David Capper
    • 1
    • 2
    • 3
  • Jochen Meyer
    • 1
    • 2
  • Daniel Schrimpf
    • 1
    • 2
    • 3
  • Marcel Kool
    • 6
  • Paul A. Northcott
    • 6
  • Olga Zheludkova
    • 8
  • Till Milde
    • 7
    • 9
  • Olaf Witt
    • 7
    • 9
  • Andreas E. Kulozik
    • 3
    • 7
  • Guido Reifenberger
    • 3
    • 10
  • Nada Jabado
    • 11
  • Arie Perry
    • 12
    • 13
  • Peter Lichter
    • 3
    • 5
  • Andreas von Deimling
    • 1
    • 2
    • 3
  • Stefan M. Pfister
    • 3
    • 6
    • 7
  • David T. W. Jones
    • 6
  1. 1.Clinical Cooperation Unit Neuropathology (G380)German Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Department of NeuropathologyHeidelberg University HospitalHeidelbergGermany
  3. 3.German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.Department of NeuropathologyNN Burdenko Neurosurgical InstituteMoscowRussia
  5. 5.Division of Molecular Genetics (B060)German Cancer Research Center (DKFZ)HeidelbergGermany
  6. 6.Division of Pediatric Neurooncology (B062)German Cancer Research Center (DKFZ)HeidelbergGermany
  7. 7.Department of Pediatric Hematology and OncologyHeidelberg University HospitalHeidelbergGermany
  8. 8.Department of Neuro-OncologyRussian Scientific Center of RadiologyMoscowRussia
  9. 9.Clinical Cooperation Unit Pediatric Oncology (G340)German Cancer Research Center (DKFZ)HeidelbergGermany
  10. 10.Department of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
  11. 11.Division of Experimental Medicine, Department of Human GeneticsMcGill UniversityMontrealCanada
  12. 12.Department of Pathology, Brain Tumor Research CenterUniversity of CaliforniaSan FranciscoUSA
  13. 13.Department of Neurological Surgery, Brain Tumor Research CenterUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations