Advertisement

Acta Neuropathologica

, Volume 128, Issue 5, pp 679–689 | Cite as

Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies

  • Mark Yarchoan
  • Jon B. Toledo
  • Edward B. Lee
  • Zoe Arvanitakis
  • Hala Kazi
  • Li-Ying Han
  • Natalia Louneva
  • Virginia M.-Y. Lee
  • Sangwon F. Kim
  • John Q. Trojanowski
  • Steven E. ArnoldEmail author
Original Paper

Abstract

Neuronal insulin signaling abnormalities have been associated with Alzheimer’s disease (AD). However, the specificity of this association and its underlying mechanisms have been unclear. This study investigated the expression of abnormal serine phosphorylation of insulin receptor substrate 1 (IRS1) in 157 human brain autopsy cases that included AD, tauopathies, α-synucleinopathies, TDP-43 proteinopathies, and normal aging. IRS1-pS616, IRS1-pS312 and downstream target Akt-pS473 measures were most elevated in AD but were also significantly increased in the tauopathies: Pick’s disease, corticobasal degeneration and progressive supranuclear palsy. Double immunofluorescence labeling showed frequent co-expression of IRS1-pS616 with pathologic tau in neurons and dystrophic neurites. To further investigate an association between tau and abnormal serine phosphorylation of IRS1, we examined the presence of abnormal IRS1-pS616 expression in pathological tau-expressing transgenic mice and demonstrated that abnormal IRS1-pS616 frequently co-localizes in tangle-bearing neurons. Conversely, we observed increased levels of hyperphosphorylated tau in the high-fat diet-fed mouse, a model of insulin resistance. These results provide confirmation and specificity that abnormal phosphorylation of IRS1 is a pathological feature of AD and other tauopathies, and provide support for an association between insulin resistance and abnormal tau as well as amyloid-β.

Keywords

Alzheimer’s disease Tau Synuclein TDP-43 Insulin resistance Insulin receptor substrate 1 

Notes

Acknowledgments

We acknowledge the special contributions to case recruitment and evaluation of Christopher. M. Clark, Stephen J. DeArmond, Mark S. Forman, Murray Grossman, Howard I. Hurtig, Jason H. Karlawish and Leo F. McCluskey, Bruce L. Miller, and William Seeley, as well as neuropathology fellows and staff at the University of Pennsylvania. This work was supported by grants from the NIH P30 AG010124, P01 AG017586, AG039478, NS084965 and a gift from the Allen H. and Selma W. Berkman Charitable Trust.

Supplementary material

401_2014_1328_MOESM1_ESM.tif (4 mb)
Supplementary material 1 (TIFF 4070 kb) SUPPLEMENTAL FIGURE 1A: IRS1-pS312 pathology percent area measures in midfrontal cortex in AD, tauopathies (including Pick’s disease, corticobasal degeneration and progressive supranuclear palsy), and normal aging. As compared to the normal aging group, IRS1-pS312 measures are markedly increased in AD but were also significantly elevated in other tauopathies. Error bars represent standard error of the mean
401_2014_1328_MOESM2_ESM.tif (4 mb)
Supplementary material 2 (TIFF 4067 kb) SUPPLEMENTAL FIGURE 1B: ELISA measurement of IRS1-pS312 expression in midfrontal gyrus cortex from AD, tauopathies (including Pick’s disease, corticobasal degeneration and progressive supranuclear palsy), and normal aging
401_2014_1328_MOESM3_ESM.tif (757 kb)
Supplementary material 3 (TIFF 757 kb) SUPPLEMENTAL FIGURE 1C: Serine phosphorylation of Akt (Akt-pS473) percent area measures in midfrontal cortex in AD, tauopathies, and normal aging. Error bars represent standard error of the mean
401_2014_1328_MOESM4_ESM.tif (1.9 mb)
Supplementary material 4 (TIFF 1901 kb) SUPPLEMENTAL FIGURE 2A. Cell-type specificity of pathological IRS1 expression in CA1 subfield of hippocampus in Alzheimer’s disease. a-c) Double immunofluorescence labeling with antibodies to IRS1-pS616 (a,c) and the neuron-specific microtubule-associated protein 2 (MAP2) (b,c). Pathological IRS1 was observed in some MAP2-immunoreactive neurons perikarya (examples indicated with vertical white arrowheads) as well as in other cell nuclei. d-f) Double labeling for IRS1-pS616 (d,f) and glial fibrillary acidic protein (GFAP) (e,f), a marker of astrocytes. GFAP- astrocytes (examples indicated with horizontal white arrows) (d-f) were seen to exhibit IRS1 in nuclei while pathological IRS1was observed only in non-astrocytes (neurons, vertical white arrowheads). g-i) Double labeling for IRS1-pS616 (g,i) and CD68 antigen (h,i), a marker of microglia (g,i). No co-localizations were observed. Examples of pathological iRS1-pS616 are indicated with vertical white arrowheads (g,i)
401_2014_1328_MOESM5_ESM.tif (900 kb)
Supplementary material 5 (TIFF 899 kb) SUPPLEMENTAL FIGURE 2B: IRS1-pS616 and GFAP double labeling in CA1 subfield of hippocampus corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). Both CBD (a-c) and PSP (d-f) showed abnormal IRS1 (arrowheads) in cells that did not co-localize with GFAP

References

  1. 1.
    Armstrong RA, Cairns NJ, Lantos PL (1999) Quantification of pathological lesions in the frontal and temporal lobe of ten patients diagnosed with Pick’s disease. Acta Neuropathol 97:456–462PubMedCrossRefGoogle Scholar
  2. 2.
    Aviles-Olmos I, Limousin P, Lees A, Foltynie T (2012) Parkinson’s disease, insulin resistance and novel agents of neuroprotection. Brain. doi: 10.1093/brain/aws009 PubMedGoogle Scholar
  3. 3.
    Bang S, Kim S, Dailey MJ et al (2012) AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc Natl Acad Sci 109:616–620. doi: 10.1073/pnas.1119751109 PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bennett DA, Schneider JA, Wilson RS et al (2005) Amyloid mediates the association of apolipoprotein E e4 allele to cognitive function in older people. J Neurol Neurosurg Psychiatry 76:1194–1199. doi: 10.1136/jnnp.2004.054445 PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bennett DA, Schneider JA, Wilson RS et al (2004) Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol 61:378–384. doi: 10.1001/archneur.61.3.378 PubMedCrossRefGoogle Scholar
  6. 6.
    Bomfim TR, Forny-Germano L, Sathler LB et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 122:1339–1353. doi: 10.1172/JCI57256 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cairns NJ, Bigio EH, Mackenzie IRA et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22. doi: 10.1007/s00401-007-0237-2 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Craft S, Baker LD, Montine TJ et al (2011) Intranasal insulin therapy for alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. doi: 10.1001/archneurol.2011.233 Google Scholar
  9. 9.
    Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3:169–178. doi: 10.1016/S1474-4422(04)00681-7 PubMedCrossRefGoogle Scholar
  10. 10.
    Dickson DW, Bergeron C, Chin SS et al (2002) Office of rare diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 61:935–946PubMedGoogle Scholar
  11. 11.
    Dickson DW, Braak H, Duda JE et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157. doi: 10.1016/S1474-4422(09)70238-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Eldar-Finkelman H, Krebs EG (1997) Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci 94:9660–9664PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Eldar-Finkelman H, Krebs EG (1997) Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. PNAS 94:9660–9664. doi: 10.1073/pnas.94.18.9660 PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Geser F, Brandmeir NJ, Kwong LK et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641. doi: 10.1001/archneur.65.5.636 PubMedCrossRefGoogle Scholar
  15. 15.
    Giasson BI, Duda JE, Quinn SM et al (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34:521–533PubMedCrossRefGoogle Scholar
  16. 16.
    Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426PubMedCrossRefGoogle Scholar
  17. 17.
    Hanger DP, Hughes K, Woodgett JR et al (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147:58–62. doi: 10.1016/0304-3940(92)90774-2 PubMedCrossRefGoogle Scholar
  18. 18.
    Hauw JJ, Daniel SE, Dickson D et al (1994) Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 44:2015–2019PubMedCrossRefGoogle Scholar
  19. 19.
    Henriksen EJ, Kinnick TR, Teachey MK et al (2003) Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 284:E892–E900. doi: 10.1152/ajpendo.00346.2002 PubMedGoogle Scholar
  20. 20.
    Hirosumi J, Tuncman G, Chang L et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336. doi: 10.1038/nature01137 PubMedCrossRefGoogle Scholar
  21. 21.
    Hong M, Lee VM-Y (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272:19547–19553. doi: 10.1074/jbc.272.31.19547 PubMedCrossRefGoogle Scholar
  22. 22.
    Hurtig HI, Trojanowski JQ, Galvin J et al (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54:1916–1921PubMedCrossRefGoogle Scholar
  23. 23.
    Iba M, Guo JL, McBride JD et al (2013) Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci 33:1024–1037. doi: 10.1523/JNEUROSCI.2642-12.2013 PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jope RS, Johnson GVW (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102. doi: 10.1016/j.tibs.2003.12.004 PubMedCrossRefGoogle Scholar
  25. 25.
    Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57:230–236PubMedGoogle Scholar
  26. 26.
    Li X, Alafuzoff I, Soininen H et al (2005) Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J 272:4211–4220. doi: 10.1111/j.1742-4658.2005.04833.x PubMedCrossRefGoogle Scholar
  27. 27.
    Lourenco MV, Clarke JR, Frozza RL et al (2013) TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 18:831–843. doi: 10.1016/j.cmet.2013.11.002 PubMedCrossRefGoogle Scholar
  28. 28.
    Ma Q-L, Yang F, Rosario ER et al (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089. doi: 10.1523/JNEUROSCI.1071-09.2009 PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mackenzie IRA, Bigio EH, Ince PG et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434. doi: 10.1002/ana.21147 PubMedCrossRefGoogle Scholar
  30. 30.
    Mawal-Dewan M, Henley J, Van de Voorde A et al (1994) The phosphorylation state of tau in the developing rat brain is regulated by phosphoprotein phosphatases. J Biol Chem 269:30981–30987PubMedGoogle Scholar
  31. 31.
    McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872. doi: 10.1212/01.wnl.0000187889.17253.b1 PubMedCrossRefGoogle Scholar
  32. 32.
    Mitchell TW, Mufson EJ, Schneider JA et al (2002) Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer’s disease. Ann Neurol 51:182–189PubMedCrossRefGoogle Scholar
  33. 33.
    Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. doi: 10.1126/science.1134108 PubMedCrossRefGoogle Scholar
  34. 34.
    Pei JJ, Braak E, Braak H et al (1999) Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58:1010–1019PubMedCrossRefGoogle Scholar
  35. 35.
    Ploia C, Antoniou X, Sclip A et al (2011) JNK plays a key role in tau hyperphosphorylation in Alzheimer’s disease models. J Alzheimers Dis 26:315–329. doi: 10.3233/JAD-2011-110320 PubMedGoogle Scholar
  36. 36.
    Qiao LY, Goldberg JL, Russell JC, Sun XJ (1999) Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem 274:10625–10632PubMedCrossRefGoogle Scholar
  37. 37.
    Ramsey PH, Ramsey PP (2008) Power of pairwise comparisons in the equal variance and unequal sample size case. Br J Math Stat Psychol 61:115–131. doi: 10.1348/000711006X153051 PubMedCrossRefGoogle Scholar
  38. 38.
    Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607PubMedCrossRefGoogle Scholar
  39. 39.
    Rivera EJ, Goldin A, Fulmer N et al (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’ s disease: link to brain reductions in acetylcholine. Insulin 8:247–268Google Scholar
  40. 40.
    Robinson JL, Geser F, Corrada MM et al (2011) Neocortical and hippocampal amyloid-β and tau measures associate with dementia in the oldest-old. Brain 134:3708–3715. doi: 10.1093/brain/awr308 PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt ML, Lee VM, Hurtig H, Trojanowski JQ (1988) Properties of antigenic determinants that distinguish neurofibrillary tangles in progressive supranuclear palsy and Alzheimer’s disease. Lab Invest 59:460–466PubMedGoogle Scholar
  42. 42.
    Soetanto A, Wilson RS, Talbot K et al (2010) Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch Gen Psychiatry 67:448–457. doi: 10.1001/archgenpsychiatry.2010.48 PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Steen E, Terry BM, Rivera EJ et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? Insulin 7:63–80Google Scholar
  44. 44.
    Talbot K, Wang H, Kazi H et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338. doi: 10.1172/JCI59903 PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Tang Z, Bereczki E, Zhang H et al (2013) mTor mediates tau dyshomeostasis: implication for Alzheimer disease. J Biol Chem 288:15556–15570. doi: 10.1074/jbc.M112.435123 PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    The National Institute on Aging, Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol Aging 18:S1–2Google Scholar
  47. 47.
    Trojanowski JQ, Revesz T (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33:615–620. doi: 10.1111/j.1365-2990.2007.00907.x PubMedCrossRefGoogle Scholar
  48. 48.
    Wands JR (2008) Alzheimer’s disease is type 3 diabetes—evidence reviewed. Society 2:1101–1113Google Scholar
  49. 49.
    Xie L, Helmerhorst E, Taddei K et al (2002) Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 22:1–5Google Scholar
  50. 50.
    Yarchoan M, Arnold SE (2014) Repurposing diabetes drugs for brain insulin resistance in alzheimer disease. Diabetes 63:2253–2261. doi: 10.2337/db14-0287 PubMedCrossRefGoogle Scholar
  51. 51.
    Yarchoan M, Xie SX, Kling MA et al (2012) Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain 135:3749–3756. doi: 10.1093/brain/aws271 PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Yoshiyama Y, Higuchi M, Zhang B et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351. doi: 10.1016/j.neuron.2007.01.010 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mark Yarchoan
    • 1
  • Jon B. Toledo
    • 2
  • Edward B. Lee
    • 2
  • Zoe Arvanitakis
    • 5
  • Hala Kazi
    • 3
  • Li-Ying Han
    • 3
  • Natalia Louneva
    • 3
  • Virginia M.-Y. Lee
    • 2
  • Sangwon F. Kim
    • 3
  • John Q. Trojanowski
    • 2
  • Steven E. Arnold
    • 3
    • 4
    Email author
  1. 1.Department of MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Pathology and Laboratory MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of PsychiatryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  4. 4.Departments of Psychiatry and Neurology, Penn Memory CenterPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  5. 5.Rush Alzheimer’s Disease CenterRush UniversityChicagoUSA

Personalised recommendations