Acta Neuropathologica

, Volume 128, Issue 2, pp 191–213 | Cite as

Macrophage subsets and microglia in multiple sclerosis

  • Jeroen F. J. Bogie
  • Piet Stinissen
  • Jerome J. A. HendriksEmail author


Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.


Macrophage Microglia Polarization Neuroinflammation CNS repair Multiple sclerosis 



We thank Prof. Dr. C. Dijkstra, Prof. Dr. J. van Horssen, and Dr. T. Vanmierlo for helpful discussions and critical reading of the manuscript.


  1. 1.
    A-Gonzalez N, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31(2):245–258. doi: 10.1016/j.immuni.2009.06.018 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25. doi: 10.1016/j.nbd.2009.07.030 PubMedGoogle Scholar
  3. 3.
    Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339(6116):156–161. doi: 10.1126/science.1227901 PubMedGoogle Scholar
  4. 4.
    Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149. doi: 10.1038/nn.2887 PubMedGoogle Scholar
  5. 5.
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi: 10.1038/nn2014 PubMedGoogle Scholar
  6. 6.
    Akenami FOT, Koskiniemi M, Mustjoki S, Siren V, Farkkila M, Vaheri A (1997) Plasma and cerebrospinal fluid activities of tissue plasminogen activator, urokinase and plasminogen activator inhibitor-1 in multiple sclerosis. Fibrinolysis Proteol 11(2):109–113. doi: 10.1016/S0268-9499(97)80103-8 Google Scholar
  7. 7.
    Anandasabapathy N, Victora GD, Meredith M, Feder R, Dong B, Kluger C, Yao K, Dustin ML, Nussenzweig MC, Steinman RM, Liu K (2011) Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 208(8):1695–1705. doi: 10.1084/jem.20102657 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Andersson U, Tracey KJ (2012) Reflex principles of immunological homeostasis. Annu Rev Immunol 30:313–335. doi: 10.1146/annurev-immunol-020711-075015 PubMedGoogle Scholar
  9. 9.
    Arima Y, Harada M, Kamimura D, Park JH, Kawano F, Yull FE, Kawamoto T, Iwakura Y, Betz UA, Marquez G, Blackwell TS, Ohira Y, Hirano T, Murakami M (2012) Regional neural activation defines a gateway for autoreactive T cells to cross the blood–brain barrier. Cell 148(3):447–457. doi: 10.1016/j.cell.2012.01.022 PubMedGoogle Scholar
  10. 10.
    Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23(30):9824–9832PubMedGoogle Scholar
  11. 11.
    Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069. doi: 10.1084/jem.20070075 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692. doi: 10.1146/annurev.immunol.021908.132557 PubMedGoogle Scholar
  13. 13.
    Axtell RC, Steinman L (2009) Gaining entry to an uninflamed brain. Nat Immunol 10(5):453–455. doi: 10.1038/ni0509-453 PubMedGoogle Scholar
  14. 14.
    Baranzini SE, Khankhanian P, Patsopoulos NA, Li M, Stankovich J, Cotsapas C, Sondergaard HB, Ban M, Barizzone N, Bergamaschi L, Booth D, Buck D, Cavalla P, Celius EG, Comabella M, Comi G, Compston A, Cournu-Rebeix I, D’alfonso S, Damotte V, Din L, Dubois B, Elovaara I, Esposito F, Fontaine B, Franke A, Goris A, Gourraud PA, Graetz C, Guerini FR, Guillot-Noel L, Hafler D, Hakonarson H, Hall P, Hamsten A, Harbo HF, Hemmer B, Hillert J, Kemppinen A, Kockum I, Koivisto K, Larsson M, Lathrop M, Leone M, Lill CM, Macciardi F, Martin R, Martinelli V, Martinelli-Boneschi F, McCauley JL, Myhr KM, Naldi P, Olsson T, Oturai A, Pericak-Vance MA, Perla F, Reunanen M, Saarela J, Saker-Delye S, Salvetti M, Sellebjerg F, Sorensen PS, Spurkland A, Stewart G, Taylor B, Tienari P, Winkelmann J, Zipp F, Ivinson AJ, Haines JL, Sawcer S, DeJager P, Hauser SL, Oksenberg JR, Co IMSG, Consor WTCC (2013) Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. Am J Hum Genet 92(6):854–865. doi: 10.1016/j.ajhg.2013.04.019 Google Scholar
  15. 15.
    Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V, Batista FD (2010) CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 11(4):303–312. doi: 10.1038/ni.1853 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, Klinkert WE, Flugel-Koch C, Issekutz TB, Wekerle H, Flugel A (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269):94–98. doi: 10.1038/nature08478 PubMedGoogle Scholar
  17. 17.
    Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995) The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15(4):437–446. doi: 10.1002/glia.440150407 PubMedGoogle Scholar
  18. 18.
    Berard JL, Zarruk JG, Arbour N, Prat A, Yong VW, Jacques FH, Akira S, David S (2012) Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 60(7):1145–1159. doi: 10.1002/Glia.22342 PubMedGoogle Scholar
  19. 19.
    Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374):538–541. doi: 10.1038/nature10554 PubMedGoogle Scholar
  20. 20.
    Bhasin M, Wu M, Tsirka SE (2007) Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC immunology 8:10. doi: 10.1186/1471-2172-8-10 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bogie JF, Jorissen W, Mailleux J, Nijland PG, Zelcer N, Vanmierlo T, Van Horssen J, Stinissen P, Hellings N, Hendriks JJA (2013) Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun 1(43). doi: 10.1186/2051-5960-1-43
  22. 22.
    Bogie JF, Stinissen P, Hellings N, Hendriks JJ (2011) Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. J Neuroinflamm 8:85. doi: 10.1186/1742-2094-8-85 Google Scholar
  23. 23.
    Bogie JF, Timmermans S, Huynh-Thu VA, Irrthum A, Smeets HJ, Gustafsson JA, Steffensen KR, Mulder M, Stinissen P, Hellings N, Hendriks JJ (2012) Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS ONE 7(9):e44998. doi: 10.1371/journal.pone.0044998 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, Aerts JM, Amor S, Nieuwenhuis EE, Laman JD (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129(Pt 2):517–526. doi: 10.1093/brain/awh707 PubMedGoogle Scholar
  25. 25.
    Bragg DC, Boles JC, Meeker RB (2002) Destabilization of neuronal calcium homeostasis by factors secreted from choroid plexus macrophage cultures in response to feline immunodeficiency virus. Neurobiol Dis 9(2):173–186. doi: 10.1006/nbdi.2001.0459 PubMedGoogle Scholar
  26. 26.
    Bragg DC, Hudson LC, Liang YH, Tompkins MB, Fernandes A, Meeker RB (2002) Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus. J Neurovirol 8(3):225–239. doi: 10.1080/13550280290049679 PubMedGoogle Scholar
  27. 27.
    Brown DA, Sawchenko PE (2007) Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 502(2):236–260. doi: 10.1002/cne.21307 PubMedGoogle Scholar
  28. 28.
    Burdo TH, Lackner A, Williams KC (2013) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254(1):102–113. doi: 10.1111/imr.12068 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. doi: 10.1038/nn.3599 PubMedPubMedCentralGoogle Scholar
  30. 30.
    Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N, Schwartz A, Smirnov I, Pollack A, Jung S, Schwartz M (2006) Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Investig 116(4):905–915. doi: 10.1172/JCI26836 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Investig 122(9):3063–3087. doi: 10.1172/JCI62636 PubMedPubMedCentralGoogle Scholar
  32. 32.
    Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–160. doi: 10.1016/j.mcn.2005.10.006 PubMedGoogle Scholar
  33. 33.
    Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Nemethova A, Matteoli G, Boeckxstaens GE (2014) Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS ONE 9(1):e87785. doi: 10.1371/journal.pone.0087785 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. doi: 10.1038/nn1715 PubMedGoogle Scholar
  35. 35.
    Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, Hedrick CC, Cook HT, Diebold S, Geissmann F (2013) Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 153(2):362–375. doi: 10.1016/j.cell.2013.03.010 PubMedPubMedCentralGoogle Scholar
  36. 36.
    Chinnery HR, Ruitenberg MJ, McMenamin PG (2010) Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J Neuropathol Exp Neurol 69(9):896–909. doi: 10.1097/NEN.0b013e3181edbc1a PubMedGoogle Scholar
  37. 37.
    Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) ROR gamma t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567. doi: 10.1038/Ni.2027 PubMedGoogle Scholar
  38. 38.
    Corthals AP (2011) Multiple sclerosis is not a disease of the immune system. Q Rev Biol 86(4):287–321PubMedGoogle Scholar
  39. 39.
    Dayyani F, Belge KU, Frankenberger M, Mack M, Berki T, Ziegler-Heitbrock L (2003) Mechanism of glucocorticoid-induced depletion of human CD14+ CD16+ monocytes. J Leukoc Biol 74(1):33–39PubMedGoogle Scholar
  40. 40.
    De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S, International MSGC, Baranzini SE, McCauley JL, Pericak-Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C, McArdle WL, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer SJ, Weiner HL, Hauser SL, Hafler DA, Oksenberg JR (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41(7):776–782. doi: 10.1038/ng.401 PubMedPubMedCentralGoogle Scholar
  41. 41.
    Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ, Ho LP (2012) Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol 189(2):551–557. doi: 10.4049/jimmunol.1103608 PubMedGoogle Scholar
  42. 42.
    Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, Ransohoff RM, Popovich PG (2011) Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci 31(27):9910–9922. doi: 10.1523/JNEUROSCI.2114-11.2011 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Dragunow M (2013) Meningeal and choroid plexus cells—novel drug targets for CNS disorders. Brain Res 1501:32–55. doi: 10.1016/j.brainres.2013.01.013 PubMedGoogle Scholar
  44. 44.
    Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60(5):717–727. doi: 10.1002/glia.22298 PubMedGoogle Scholar
  45. 45.
    Edwards KR, Goyal J, Plavina T, Czerkowicz J, Goelz S, Ranger A, Cadavid D, Browning JL (2013) Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis. PLoS ONE 8(11):e81007. doi: 10.1371/journal.pone.0081007 PubMedPubMedCentralGoogle Scholar
  46. 46.
    El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12(6):568–575. doi: 10.1038/ni.2031 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397. doi: 10.1016/j.neuron.2014.02.040 PubMedGoogle Scholar
  48. 48.
    Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52(1):112–129. doi: 10.1002/1097-0029(20010101)52:1<112:AID-JEMT13>3.0.CO;2-5 PubMedGoogle Scholar
  49. 49.
    Fabriek BO, Van Haastert ES, Galea I, Polfliet MM, Dopp ED, Van Den Heuvel MM, Van Den Berg TK, De Groot CJ, Van Der Valk P, Dijkstra CD (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51(4):297–305. doi: 10.1002/glia.20208 PubMedGoogle Scholar
  50. 50.
    Farber K, Pannasch U, Kettenmann H (2005) Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 29(1):128–138. doi: 10.1016/j.mcn.2005.01.003 PubMedGoogle Scholar
  51. 51.
    Foote AK, Blakemore WF (2005) Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128(Pt 3):528–539. doi: 10.1093/brain/awh417 PubMedGoogle Scholar
  52. 52.
    Frisullo G, Mirabella M, Angelucci F, Caggiula M, Morosetti R, Sancricca C, Patanella AK, Nociti V, Iorio R, Bianco A, Tomassini V, Pozzilli C, Tonali PA, Matarese G, Batocchi AP (2007) The effect of disease activity on leptin, leptin receptor and suppressor of cytokine signalling-3 expression in relapsing-remitting multiple sclerosis. J Neuroimmunol 192(1–2):174–183. doi: 10.1016/j.jneuroim.2007.08.008 PubMedGoogle Scholar
  53. 53.
    Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM, Mitteregger G, Haass C, LaFerla FM, Kretzschmar H, Herms J (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13(4):411–413. doi: 10.1038/Nn.2511 PubMedPubMedCentralGoogle Scholar
  54. 54.
    Gahmberg CG, Tian L, Ning L, Nyman-Huttunen H (2008) ICAM-5–a novel two-facetted adhesion molecule in the mammalian brain. Immunol Lett 117(2):131–135. doi: 10.1016/j.imlet.2008.02.004 PubMedGoogle Scholar
  55. 55.
    Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D (2005) Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49(3):375–384. doi: 10.1002/glia.20124 PubMedGoogle Scholar
  56. 56.
    Garabedian BV, Lemaigre-Dubreuil Y, Mariani J (2000) Central origin of IL-1beta produced during peripheral inflammation: role of meninges. Brain Res Mol Brain Res 75(2):259–263PubMedGoogle Scholar
  57. 57.
    Gentleman SM (2013) Review: microglia in protein aggregation disorders: friend or foe? Neuropathol Appl Neurobiol 39(1):45–50. doi: 10.1111/nan.12017 PubMedPubMedCentralGoogle Scholar
  58. 58.
    Getts DR, Terry RL, Getts MT, Muller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJ (2008) Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 205(10):2319–2337. doi: 10.1084/jem.20080421 PubMedPubMedCentralGoogle Scholar
  59. 59.
    Glass R, Synowitz M (2014) CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol. doi: 10.1007/s00401-014-1274-2 PubMedGoogle Scholar
  60. 60.
    Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16(11):1618–1626. doi: 10.1038/nn.3531 PubMedGoogle Scholar
  61. 61.
    Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105. doi: 10.1007/s00401-009-0622-0 PubMedGoogle Scholar
  62. 62.
    GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403(6768):439–444. doi: 10.1038/35000226 PubMedGoogle Scholar
  63. 63.
    Gredler V, Ebner S, Schanda K, Forstner M, Berger T, Romani N, Reindl M (2010) Impact of human myelin on the maturation and function of human monocyte-derived dendritic cells. Clin Immunol 134(3):296–304. doi: 10.1016/j.clim.2009.11.003 PubMedGoogle Scholar
  64. 64.
    Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11(3):328–334. doi: 10.1038/nm1197 PubMedGoogle Scholar
  65. 65.
    Han MH, Lundgren DH, Jaiswal S, Chao M, Graham KL, Garris CS, Axtell RC, Ho PP, Lock CB, Woodard JI, Brownell SE, Zoudilova M, Hunt JF, Baranzini SE, Butcher EC, Raine CS, Sobel RA, Han DK, Weissman I, Steinman L (2012) Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. J Exp Med 209(7):1325–1334. doi: 10.1084/jem.20101974 PubMedPubMedCentralGoogle Scholar
  66. 66.
    Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66(6):739–753. doi: 10.1002/ana.21800 PubMedGoogle Scholar
  67. 67.
    Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD (2005) Macrophages and neurodegeneration. Brain Res Brain Res Rev 48(2):185–195. doi: 10.1016/j.brainresrev.2004.12.008 PubMedGoogle Scholar
  68. 68.
    Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152. doi: 10.1038/nm1177 PubMedGoogle Scholar
  69. 69.
    Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J, Feuerer M (2013) Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14(8):821–830. doi: 10.1038/ni.2638 PubMedGoogle Scholar
  70. 70.
    Hikawa N, Takenaka T (1996) Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture. Cell Mol Neurobiol 16(4):517–528PubMedGoogle Scholar
  71. 71.
    Hofmann N, Lachnit N, Streppel M, Witter B, Neiss WF, Guntinas-Lichius O, Angelov DN (2002) Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1 alpha by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats. BMC Immunol 3:11PubMedPubMedCentralGoogle Scholar
  72. 72.
    Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18(5):461–467. doi: 10.1016/j.gde.2008.07.016 PubMedPubMedCentralGoogle Scholar
  73. 73.
    Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. doi: 10.1161/STROKEAHA.112.659656 PubMedGoogle Scholar
  74. 74.
    Hucke S, Wiendl H, Knolle P, Klotz L (2013) Nuclear receptor control of myeloid cell responses—implications for CNS autoimmunity. Rheumatology 3(2):1–12Google Scholar
  75. 75.
    Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172(4):1025–1033PubMedGoogle Scholar
  76. 76.
    Huizinga R, van der Star BJ, Kipp M, Jong R, Gerritsen W, Clarner T, Puentes F, Dijkstra CD, van der Valk P, Amor S (2012) Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis. Glia 60(3):422–431. doi: 10.1002/glia.22276 PubMedGoogle Scholar
  77. 77.
    Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F, Habenicht AJ, Ziegler-Heitbrock L, Randolph GJ (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115(3):e10–e19. doi: 10.1182/blood-2009-07-235028 PubMedPubMedCentralGoogle Scholar
  78. 78.
    Jackson SJ, Giovannoni G, Baker D (2011) Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflamm 8:76. doi: 10.1186/1742-2094-8-76 Google Scholar
  79. 79.
    Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199(7):947–957. doi: 10.1084/jem.20031389 PubMedPubMedCentralGoogle Scholar
  80. 80.
    Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27(3):1176–1190. doi: 10.1096/Fj.12-222257 PubMedGoogle Scholar
  81. 81.
    Johansson EM, Sanabra C, Cortes R, Vilaro MT, Mengod G (2011) Lipopolysaccharide administration in vivo induces differential expression of cAMP-specific phosphodiesterase 4B mRNA splice variants in the mouse brain. J Neurosci Res 89(11):1761–1772. doi: 10.1002/jnr.22707 PubMedGoogle Scholar
  82. 82.
    Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J, Martin C, Harris RA, Hafler DA, Kuchroo VK, Olsson T, Piehl F, Wallstrom E (2004) T cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol 172(11):7169–7176PubMedGoogle Scholar
  83. 83.
    Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi: 10.1038/nn.3318 PubMedGoogle Scholar
  84. 84.
    Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G, Ludwig A, Lira SA, Jung S (2011) In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118(22):e156–e167. doi: 10.1182/blood-2011-04-348946 PubMedGoogle Scholar
  85. 85.
    King IL, Dickendesher TL, Segal BM (2009) Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113(14):3190–3197. doi: 10.1182/blood-2008-07-168575 PubMedPubMedCentralGoogle Scholar
  86. 86.
    Kivisakk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, Khoury SJ (2009) Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 65(4):457–469. doi: 10.1002/ana.21379 PubMedPubMedCentralGoogle Scholar
  87. 87.
    Koning N, Bo L, Hoek RM, Huitinga I (2007) Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol 62(5):504–514. doi: 10.1002/ana.21220 PubMedGoogle Scholar
  88. 88.
    Koning N, Uitdehaag BM, Huitinga I, Hoek RM (2009) Restoring immune suppression in the multiple sclerosis brain. Prog Neurobiol 89(4):359–368. doi: 10.1016/j.pneurobio.2009.09.005 PubMedGoogle Scholar
  89. 89.
    Konsman JP, Drukarch B, Van Dam AM (2007) (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci 112(1):1–25. doi: 10.1042/CS20060043 PubMedGoogle Scholar
  90. 90.
    Kooi EJ, van Horssen J, Witte ME, Amor S, Bo L, Dijkstra CD, van der Valk P, Geurts JJ (2009) Abundant extracellular myelin in the meninges of patients with multiple sclerosis. Neuropathol Appl Neurobiol 35(3):283–295. doi: 10.1111/j.1365-2990.2008.00986.x PubMedGoogle Scholar
  91. 91.
    Kooij G, Kopplin K, Blasig R, Stuiver M, Koning N, Goverse G, van der Pol SM, van Het Hof B, Gollasch M, Drexhage JA, Reijerkerk A, Meij IC, Mebius R, Willnow TE, Muller D, Blasig IE, de Vries HE (2013) Disturbed function of the blood–cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathol. doi: 10.1007/s00401-013-1227-1 PubMedGoogle Scholar
  92. 92.
    Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26(1):328–332. doi: 10.1523/JNEUROSCI.2615-05.2006 PubMedGoogle Scholar
  93. 93.
    Kouwenhoven M, Teleshova N, Ozenci V, Press R, Link H (2001) Monocytes in multiple sclerosis: phenotype and cytokine profile. J Neuroimmunol 112(1–2):197–205PubMedGoogle Scholar
  94. 94.
    Kristjansdottir G, Sandling JK, Bonetti A, Roos IM, Milani L, Wang C, Gustafsdottir SM, Sigurdsson S, Lundmark A, Tienari PJ, Koivisto K, Elovaara I, Pirttila T, Reunanen M, Peltonen L, Saarela J, Hillert J, Olsson T, Landegren U, Alcina A, Fernandez O, Leyva L, Guerrero M, Lucas M, Izquierdo G, Matesanz F, Syvanen AC (2008) Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. J Med Genet 45(6):362–369. doi: 10.1136/jmg.2007.055012 PubMedPubMedCentralGoogle Scholar
  95. 95.
    Krumbholz M, Derfuss T, Hohlfeld R, Meinl E (2012) B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 8(11):613–623. doi: 10.1038/nrneurol.2012.203 PubMedGoogle Scholar
  96. 96.
    Kumar A, Loane DJ (2012) Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 26(8):1191–1201. doi: 10.1016/j.bbi.2012.06.008 PubMedGoogle Scholar
  97. 97.
    Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M (2013) IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136(Pt 11):3427–3440. doi: 10.1093/brain/awt259 PubMedGoogle Scholar
  98. 98.
    Lastres-Becker I, Innamorato NG, Jaworski T, Rabano A, Kugler S, Van Leuven F, Cuadrado A (2013) Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain. doi: 10.1093/brain/awt323 PubMedGoogle Scholar
  99. 99.
    Lima IV, Bastos LF, Limborco-Filho M, Fiebich BL, de Oliveira AC (2012) Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediators Inflamm 2012:946813. doi: 10.1155/2012/946813 PubMedPubMedCentralGoogle Scholar
  100. 100.
    Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26(50):12904–12913. doi: 10.1523/JNEUROSCI.2531-06.2006 PubMedGoogle Scholar
  101. 101.
    Liuzzi GM, Latronico T, Fasano A, Carlone G, Riccio P (2004) Interferon-beta inhibits the expression of metalloproteinases in rat glial cell cultures: implications for multiple sclerosis pathogenesis and treatment. Mult Scler 10(3):290–297PubMedGoogle Scholar
  102. 102.
    Locatelli G, Wortge S, Buch T, Ingold B, Frommer F, Sobottka B, Kruger M, Karram K, Buhlmann C, Bechmann I, Heppner FL, Waisman A, Becher B (2012) Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat Neurosci 15(4):543–550. doi: 10.1038/nn.3062 PubMedGoogle Scholar
  103. 103.
    Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L (2011) Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25(1):358–369. doi: 10.1096/fj.10-171579 PubMedPubMedCentralGoogle Scholar
  104. 104.
    Lu W, Bhasin M, Tsirka SE (2002) Involvement of tissue plasminogen activator in onset and effector phases of experimental allergic encephalomyelitis. J Neurosci 22(24):10781–10789PubMedPubMedCentralGoogle Scholar
  105. 105.
    Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, Bruck W, Parisi JE, Scheithauer BW, Giannini C, Weigand SD, Mandrekar J, Ransohoff RM (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365(23):2188–2197. doi: 10.1056/NEJMoa1100648 PubMedPubMedCentralGoogle Scholar
  106. 106.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi: 10.1016/ PubMedGoogle Scholar
  107. 107.
    Martins TB, Rose JW, Jaskowski TD, Wilson AR, Husebye D, Seraj HS, Hill HR (2011) Analysis of proinflammatory and anti-inflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay. Am J Clin Pathol 136(5):696–704. doi: 10.1309/Ajcp7ubk8ibvmvnr PubMedGoogle Scholar
  108. 108.
    Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2):120–129. doi: 10.1038/35040009 PubMedGoogle Scholar
  109. 109.
    Maxwell WL, Follows R, DE Ashhurst, Berry M (1990) The response of the cerebral hemisphere of the rat to injury. II. The neonatal rat. Philos Trans R Soc Lond Ser B Biol Sci 328(1250):501–513Google Scholar
  110. 110.
    McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11(3):335–339. doi: 10.1038/nm1202 PubMedGoogle Scholar
  111. 111.
    McMenamin PG, Wealthall RJ, Deverall M, Cooper SJ, Griffin B (2003) Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res 313(3):259–269. doi: 10.1007/s00441-003-0779-0 PubMedGoogle Scholar
  112. 112.
    Meeker RB, Bragg DC, Poulton W, Hudson L (2012) Transmigration of macrophages across the choroid plexus epithelium in response to the feline immunodeficiency virus. Cell Tissue Res 347(2):443–455. doi: 10.1007/s00441-011-1301-8 PubMedPubMedCentralGoogle Scholar
  113. 113.
    Mildner A, Mack M, Schmidt H, Bruck W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M (2009) CCR2+ Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132(Pt 9):2487–2500. doi: 10.1093/brain/awp144 PubMedGoogle Scholar
  114. 114.
    Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP, Quinn M, Bruck W, Bechmann I, Heneka MT, Priller J, Prinz M (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 31(31):11159–11171. doi: 10.1523/JNEUROSCI.6209-10.2011 PubMedGoogle Scholar
  115. 115.
    Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553. doi: 10.1038/nn2015 PubMedGoogle Scholar
  116. 116.
    Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 105(27):9325–9330. doi: 10.1073/pnas.0711175105 PubMedPubMedCentralGoogle Scholar
  117. 117.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. doi: 10.1038/nn.3469 PubMedPubMedCentralGoogle Scholar
  118. 118.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218. doi: 10.1038/nn.3469 PubMedPubMedCentralGoogle Scholar
  119. 119.
    Mitchell K, Yang HY, Berk JD, Tran JH, Iadarola MJ (2009) Monocyte chemoattractant protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation. Neuroscience 158(2):885–895. doi: 10.1016/j.neuroscience.2008.10.047 PubMedPubMedCentralGoogle Scholar
  120. 120.
    Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE (2012) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188(1):29–36. doi: 10.4049/jimmunol.1100421 PubMedPubMedCentralGoogle Scholar
  121. 121.
    Monif M, Burnstock G, Williams DA (2010) Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42(11):1753–1756. doi: 10.1016/j.biocel.2010.06.021 PubMedGoogle Scholar
  122. 122.
    Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A, Antel JP (2013) miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol. doi: 10.1002/ana.23967 Google Scholar
  123. 123.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi: 10.1038/nri2448 PubMedPubMedCentralGoogle Scholar
  124. 124.
    Mott RT, Ait-Ghezala G, Town T, Mori T, Vendrame M, Zeng J, Ehrhart J, Mullan M, Tan J (2004) Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46(4):369–379. doi: 10.1002/glia.20009 PubMedGoogle Scholar
  125. 125.
    Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. doi: 10.1038/nri3073 PubMedPubMedCentralGoogle Scholar
  126. 126.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037–3047. doi: 10.1084/jem.20070885 PubMedPubMedCentralGoogle Scholar
  127. 127.
    Nataf S, Strazielle N, Hatterer E, Mouchiroud G, Belin MF, Ghersi-Egea JF (2006) Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia 54(3):160–171. doi: 10.1002/glia.20373 PubMedGoogle Scholar
  128. 128.
    Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Bruck W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17(4):495–499. doi: 10.1038/nm.2324 PubMedGoogle Scholar
  129. 129.
    O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6(4):537–544PubMedGoogle Scholar
  130. 130.
    Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, Heckelsmiller K, Nietfeld W, Ellwart J, Klinkert WE, Lottaz C, Nosov M, Brinkmann V, Spang R, Lehrach H, Vingron M, Wekerle H, Flugel-Koch C, Flugel A (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488(7413):675–679. doi: 10.1038/nature11337 PubMedGoogle Scholar
  131. 131.
    Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J, Naismith RT, Panina-Bordignon P, Passini N, Galimberti D, Scarpini E, Colonna M, Cross AH (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131:3081–3091. doi: 10.1093/Brain/Awn217 PubMedPubMedCentralGoogle Scholar
  132. 132.
    Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007) Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 37(5):1290–1301. doi: 10.1002/eji.200636837 PubMedGoogle Scholar
  133. 133.
    Polfliet MM, van de Veerdonk F, Dopp EA, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2002) The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis. J Neuroimmunol 122(1–2):1–8PubMedGoogle Scholar
  134. 134.
    Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Dopp EA, Renardel de Lavalette C, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol 167(8):4644–4650PubMedGoogle Scholar
  135. 135.
    Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81(3):374–389. doi: 10.1002/jnr.20488 PubMedGoogle Scholar
  136. 136.
    Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN (2007) GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 178(1):39–48PubMedGoogle Scholar
  137. 137.
    Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70. doi: 10.1038/nm.2266 PubMedPubMedCentralGoogle Scholar
  138. 138.
    Popescu BF, Lucchinetti CF (2012) Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol 12:11. doi: 10.1186/1471-2377-12-11 PubMedGoogle Scholar
  139. 139.
    Popescu BF, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annu Rev Pathol 7:185–217. doi: 10.1146/annurev-pathol-011811-132443 PubMedGoogle Scholar
  140. 140.
    Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J, Lang R, Martin R, Gold R, Becher B, Bruck W, Kalinke U (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28(5):675–686. doi: 10.1016/j.immuni.2008.03.011 PubMedGoogle Scholar
  141. 141.
    Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol. doi: 10.1007/s00401-014-1267-1 Google Scholar
  142. 142.
    Qin H, Yeh WI, De Sarno P, Holdbrooks AT, Liu Y, Muldowney MT, Reynolds SL, Yanagisawa LL, Fox TH 3rd, Park K, Harrington LE, Raman C, Benveniste EN (2012) Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc Natl Acad Sci USA 109(13):5004–5009. doi: 10.1073/pnas.1117218109 PubMedPubMedCentralGoogle Scholar
  143. 143.
    Ramaglia V, Hughes TR, Donev RM, Ruseva MM, Wu X, Huitinga I, Baas F, Neal JW, Morgan BP (2012) C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc Natl Acad Sci USA 109(3):965–970. doi: 10.1073/pnas.1111924109 PubMedPubMedCentralGoogle Scholar
  144. 144.
    Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Investig 122(4):1164–1171. doi: 10.1172/JCI58644 PubMedPubMedCentralGoogle Scholar
  145. 145.
    Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262. doi: 10.1038/nature09615 PubMedGoogle Scholar
  146. 146.
    Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635. doi: 10.1038/nri3265 PubMedGoogle Scholar
  147. 147.
    Rasouli J, Lekhraj R, Ozbalik M, Lalezari P, Casper D (2011) Brain–spleen inflammatory coupling: a literature review. Einstein J Biol Med 27(2):74–77PubMedPubMedCentralGoogle Scholar
  148. 148.
    Ratchford JN, Endres CJ, Hammoud DA, Pomper MG, Shiee N, McGready J, Pham DL, Calabresi PA (2012) Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259(6):1199–1205. doi: 10.1007/s00415-011-6337-x PubMedPubMedCentralGoogle Scholar
  149. 149.
    Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10(5):514–523. doi: 10.1038/ni.1716 PubMedGoogle Scholar
  150. 150.
    Reuter U, Bolay H, Jansen-Olesen I, Chiarugi A, Sanchez del Rio M, Letourneau R, Theoharides TC, Waeber C, Moskowitz MA (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124(Pt 12):2490–2502PubMedGoogle Scholar
  151. 151.
    Ruckh JM, Zhao JW, Shadrach JL, van Wijngaarden P, Rao TN, Wagers AJ, Franklin RJ (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10(1):96–103. doi: 10.1016/j.stem.2011.11.019 PubMedPubMedCentralGoogle Scholar
  152. 152.
    Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE 5(10):e13693. doi: 10.1371/journal.pone.0013693 PubMedPubMedCentralGoogle Scholar
  153. 153.
    Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11(11):775–787. doi: 10.1038/nri3086 PubMedGoogle Scholar
  154. 154.
    Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi: 10.1126/science.1219179 PubMedGoogle Scholar
  155. 155.
    Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113. doi: 10.1371/journal.pmed.1000113 PubMedPubMedCentralGoogle Scholar
  156. 156.
    Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P, Lira SA, Jung S, Schwartz M (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38(3):555–569. doi: 10.1016/j.immuni.2013.02.012 PubMedPubMedCentralGoogle Scholar
  157. 157.
    Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how’. J Pathol 229(2):332–346. doi: 10.1002/path.4106 PubMedGoogle Scholar
  158. 158.
    Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125(Pt 1):75–85PubMedGoogle Scholar
  159. 159.
    Staykova MA, Cowden W, Willenborg DO (2002) Macrophages and nitric oxide as the possible cellular and molecular basis for strain and gender differences in susceptibility to autoimmune central nervous system inflammation. Immunol Cell Biol 80(2):188–197. doi: 10.1046/j.1440-1711.2002.01072.x PubMedGoogle Scholar
  160. 160.
    Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Panina Bordignon P, Meldolesi J (2009) The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 110(1):284–294. doi: 10.1111/j.1471-4159.2009.06130.x PubMedGoogle Scholar
  161. 161.
    Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266PubMedGoogle Scholar
  162. 162.
    Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349PubMedGoogle Scholar
  163. 163.
    Stys PK, Zamponi GW, van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13(7):507–514. doi: 10.1038/nrn3275 PubMedGoogle Scholar
  164. 164.
    Sunnemark D, Eltayeb S, Nilsson M, Wallstrom E, Lassmann H, Olsson T, Berg AL, Ericsson-Dahlstrand A (2005) CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflamm 2:17. doi: 10.1186/1742-2094-2-17 Google Scholar
  165. 165.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325(5940):612–616. doi: 10.1126/science.1175202 PubMedPubMedCentralGoogle Scholar
  166. 166.
    Szmydynger-Chodobska J, Strazielle N, Gandy JR, Keefe TH, Zink BJ, Ghersi-Egea JF, Chodobski A (2012) Posttraumatic invasion of monocytes across the blood–cerebrospinal fluid barrier. J Cereb Blood Flow Metab 32(1):93–104. doi: 10.1038/jcbfm.2011.111 PubMedPubMedCentralGoogle Scholar
  167. 167.
    Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4(4):e124. doi: 10.1371/journal.pmed.0040124 PubMedPubMedCentralGoogle Scholar
  168. 168.
    Takahashi K, Rochford CDP, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657. doi: 10.1084/Jem.20041611 PubMedPubMedCentralGoogle Scholar
  169. 169.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338(5):278–285. doi: 10.1056/NEJM199801293380502 PubMedGoogle Scholar
  170. 170.
    Trebst C, Sorensen TL, Kivisakk P, Cathcart MK, Hesselgesser J, Horuk R, Sellebjerg F, Lassmann H, Ransohoff RM (2001) CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 159(5):1701–1710PubMedPubMedCentralGoogle Scholar
  171. 171.
    Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177(6):3520–3524PubMedGoogle Scholar
  172. 172.
    van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, Dijkstra CD (1996) Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J Neuroimmunol 70(2):145–152PubMedGoogle Scholar
  173. 173.
    Van Dyken SJ, Locksley RM (2013) Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 31:317–343. doi: 10.1146/annurev-immunol-032712-095906 PubMedPubMedCentralGoogle Scholar
  174. 174.
    van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, Gerritsen W, Kooi EJ, Witte ME, Geurts JJ, de Vries HE, Peferoen-Baert R, van den Elsen PJ, van der Valk P, Amor S (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflamm 9:156. doi: 10.1186/1742-2094-9-156 Google Scholar
  175. 175.
    van Noort JM, van den Elsen PJ, van Horssen J, Geurts JJ, van der Valk P, Amor S (2011) Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS Neurol Disord Drug Targets 10(1):68–81PubMedGoogle Scholar
  176. 176.
    van Rossum D, Hilbert S, Strassenburg S, Hanisch UK, Bruck W (2008) Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype. Glia 56(3):271–283. doi: 10.1002/glia.20611 PubMedGoogle Scholar
  177. 177.
    van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, Voerman JS, Biber KP, Boddeke HW, Hopken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, t Hart BA, Amor S, Laman JD, Boven LA (2009) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med 87(3):273–286. doi: 10.1007/s00109-008-0421-4 PubMedGoogle Scholar
  178. 178.
    van Zwam M, Wierenga-Wolf AF, Melief MJ, Schrijver B, Laman JD, Boven LA (2010) Myelin ingestion by macrophages promotes their motility and capacity to recruit myeloid cells. J Neuroimmunol 225(1–2):112–117. doi: 10.1016/j.jneuroim.2010.04.021 PubMedGoogle Scholar
  179. 179.
    Vanderlocht J, Hellings N, Hendriks JJ, Vandenabeele F, Moreels M, Buntinx M, Hoekstra D, Antel JP, Stinissen P (2006) Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-alpha-induced oligodendrocyte apoptosis. J Neurosci Res 83(5):763–774. doi: 10.1002/jnr.20781 PubMedGoogle Scholar
  180. 180.
    Vercellino M, Votta B, Condello C, Piacentino C, Romagnolo A, Merola A, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2008) Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J Neuroimmunol 199(1–2):133–141. doi: 10.1016/j.jneuroim.2008.04.035 PubMedGoogle Scholar
  181. 181.
    Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflamm 10:35. doi: 10.1186/1742-2094-10-35 Google Scholar
  182. 182.
    Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68. doi: 10.1016/j.jneuroim.2006.11.014 PubMedPubMedCentralGoogle Scholar
  183. 183.
    Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stuve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13(8):935–943. doi: 10.1038/nm1620 PubMedGoogle Scholar
  184. 184.
    Wei R, Jonakait GM (1999) Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta1 (TGF-beta1) down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia. J Neuroimmunol 95(1–2):8–18PubMedGoogle Scholar
  185. 185.
    Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res 38(4):433–443. doi: 10.1002/jnr.490380409 PubMedGoogle Scholar
  186. 186.
    Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119(1):75–88. doi: 10.1007/s00401-009-0627-8 PubMedGoogle Scholar
  187. 187.
    Wu Z, Hayashi Y, Zhang J, Nakanishi H (2007) Involvement of prostaglandin E2 released from leptomeningeal cells in increased expression of transforming growth factor-beta in glial cells and cortical neurons during systemic inflammation. J Neurosci Res 85(1):184–192. doi: 10.1002/jnr.21100 PubMedGoogle Scholar
  188. 188.
    Wu Z, Zhang J, Nakanishi H (2005) Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation. J Neuroimmunol 167(1–2):90–98. doi: 10.1016/j.jneuroim.2005.06.025 PubMedGoogle Scholar
  189. 189.
    Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. doi: 10.1038/nature12034 PubMedPubMedCentralGoogle Scholar
  190. 190.
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. doi: 10.1016/j.immuni.2012.12.001 PubMedPubMedCentralGoogle Scholar
  191. 191.
    Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7(6):454–465. doi: 10.1038/nri2093 PubMedGoogle Scholar
  192. 192.
    Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ (2011) Parenchymal accumulation of CD163 + macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 237(1–2):73–79. doi: 10.1016/j.jneuroim.2011.06.006 PubMedGoogle Scholar
  193. 193.
    Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Lesional accumulation of CD163+ macrophages/microglia in rat traumatic brain injury. Brain Res 1461:102–110. doi: 10.1016/j.brainres.2012.04.038 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jeroen F. J. Bogie
    • 1
  • Piet Stinissen
    • 1
  • Jerome J. A. Hendriks
    • 1
    Email author
  1. 1.Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life SciencesDiepenbeekBelgium

Personalised recommendations