Acta Neuropathologica

, Volume 127, Issue 6, pp 825–843 | Cite as

ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology

  • Peter T. Nelson
  • Steven Estus
  • Erin L. Abner
  • Ishita Parikh
  • Manasi Malik
  • Janna H. Neltner
  • Eseosa Ighodaro
  • Wang-Xia Wang
  • Bernard R. Wilfred
  • Li-San Wang
  • Walter A. Kukull
  • Kannabiran Nandakumar
  • Mark L. Farman
  • Wayne W. Poon
  • Maria M. Corrada
  • Claudia H. Kawas
  • David H. Cribbs
  • David A. Bennett
  • Julie A. Schneider
  • Eric B. Larson
  • Paul K. Crane
  • Otto Valladares
  • Frederick A. Schmitt
  • Richard J. Kryscio
  • Gregory A. Jicha
  • Charles D. Smith
  • Stephen W. Scheff
  • Joshua A. Sonnen
  • Jonathan L. Haines
  • Margaret A. Pericak-Vance
  • Richard Mayeux
  • Lindsay A. Farrer
  • Linda J. Van Eldik
  • Craig Horbinski
  • Robert C. Green
  • Marla Gearing
  • Leonard W. Poon
  • Patricia L. Kramer
  • Randall L. Woltjer
  • Thomas J. Montine
  • Amanda B. Partch
  • Alexander J. Rajic
  • KatieRose Richmire
  • Sarah E. Monsell
  • Alzheimer’ Disease Genetic Consortium
  • Gerard D. Schellenberg
  • David W. Fardo
Original Paper

Abstract

Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer’s Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer’s Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer’s Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1–3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4–5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10−9), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor.

Keywords

Oldest old Neuropathology KATP CTAGE5 ADGC Potassium channel 

Notes

Acknowledgments

We are deeply grateful to all of the study participants and all the clinical workers, who make this research possible. We thank Ms. Sonya Anderson and Ms. Ela Patel for technical support. Thanks also to Drs. Julia Kofler and M. Ilyas Kamboh for collaborative assistance in this project. 1D3 antibody was a generous gift from Dr. Manuela Neumann. Funding included National Institutes of Health (NIH) grants for ADGC (U01 AG032984), NACC (U01 AG016976), the National Cell Repository for AD (NCRAD; U24 AG21886), K25 AG043546, UL1TR000117, and the UK-ADC P30 AG028383 from the National Institute on Aging (NIA). ACT enrollment and clinical data are from NIA U01 AG 06781 (E Larson, PI). Genetic data for ACT are from Human Genome Research Institute U01 HG006375 (E Larson, PI). Rush Religious Order Study and Memory and Aging Project (D Bennett PI) is supported by NIH grants P30AG10161, R01AG15819, R01AG17917, R01AG42210, and the Translational Genomics Research Institute. University of California Irvine work was supported by NIH grants for the UCI ADC (P50AG16573) and 90+ Study (R01AG21055; C Kawas, PI). For additional acknowledgment and funding support, please see Supplemental material.

Supplementary material

401_2014_1282_MOESM1_ESM.pdf (30 kb)
Supplementary material 1 (PDF 30 kb)
401_2014_1282_MOESM2_ESM.pptx (1.4 mb)
Supplementary material 2 (PPTX 1431 kb)
401_2014_1282_MOESM3_ESM.docx (38 kb)
Supplementary material 3 (DOCX 37 kb)

References

  1. 1.
    Amador-Ortiz C, Ahmed Z, Zehr C, Dickson DW (2007) Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration. Acta Neuropathol (Berl) 113(3):245–252CrossRefGoogle Scholar
  2. 2.
    Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61(5):435–445. doi:10.1002/ana.21154 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Balasubramanian AB, Kawas CH, Peltz CB, Brookmeyer R, Corrada MM (2012) Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology 79(9):915–921. doi:10.1212/WNL.0b013e318266fc77 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Beekly DL, Ramos EM, Lee WW, Deitrich WD, Jacka ME, Wu J, Hubbard JL, Koepsell TD, Morris JC, Kukull WA, Centers NIAAsD (2007) The National Alzheimer’s Coordinating Center (NACC) database: the uniform data set. Alzheimer Dis Assoc Disord 21(3):249–258. doi:10.1097/WAD.0b013e318142774e PubMedCrossRefGoogle Scholar
  5. 5.
    Beekly DL, Ramos EM, van Belle G, Deitrich W, Clark AD, Jacka ME, Kukull WA, Centers NI-AsD (2004) The National Alzheimer’s Coordinating Center (NACC) database: an Alzheimer disease database. Alzheimer Dis Assoc Disord 18(4):270–277PubMedGoogle Scholar
  6. 6.
    Bennett DA, Schneider JA, Aggarwal NT, Arvanitakis Z, Shah RC, Kelly JF, Fox JH, Cochran EJ, Arends D, Treinkman AD, Wilson RS (2006) Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology 27(3):169–176. doi:10.1159/000096129 PubMedCrossRefGoogle Scholar
  7. 7.
    Bennett DA, Wilson RS, Arvanitakis Z, Boyle PA, de Toledo-Morrell L, Schneider JA (2013) Selected findings from the Religious Orders Study and Rush memory and aging project. J Alzheimers Dis 33(Suppl 1):S397–S403. doi:10.3233/JAD-2012-129007 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33(6):403–408PubMedCrossRefGoogle Scholar
  9. 9.
    Brenowitz WD, Monsell SE, Schmitt FA, Kukull WA, Nelson PT (2013) Hippocampal sclerosis of aging is a key Alzheimer’s disease mimic: clinical-pathologic correlations and comparisons with both Alzheimer’s disease and non-tauopathic frontotemporal lobar degeneration. J Alzheimers Dis. doi:10.3233/JAD-131880 Google Scholar
  10. 10.
    Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L (2007) ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch: Eur J Physiol 453(5):703–718. doi:10.1007/s00424-006-0116-z CrossRefGoogle Scholar
  11. 11.
    Bush WS, Moore JH (2012) Chapter 11: genome-wide association studies. PLoS Comput Biol 8(12):e1002822. doi:10.1371/journal.pcbi.1002822 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chutkow WA, Makielski JC, Nelson DJ, Burant CF, Fan Z (1999) Alternative splicing of sur2 Exon 17 regulates nucleotide sensitivity of the ATP-sensitive potassium channel. J Biol Chem 274(19):13656–13665PubMedCrossRefGoogle Scholar
  13. 13.
    Chutkow WA, Simon MC, Le Beau MM, Burant CF (1996) Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes 45(10):1439–1445PubMedCrossRefGoogle Scholar
  14. 14.
    Consortium GT (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585. doi:10.1038/ng.2653 CrossRefGoogle Scholar
  15. 15.
    Corrada MM, Berlau DJ, Kawas CH (2012) A population-based clinicopathological study in the oldest-old: the 90+ study. Curr Alzheimer Res 9(6):709–717PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Corrada MM, Brookmeyer R, Berlau D, Paganini-Hill A, Kawas CH (2008) Prevalence of dementia after age 90: results from the 90+ study. Neurology 71(5):337–343. doi:10.1212/01.wnl.0000310773.65918.cd PubMedCrossRefGoogle Scholar
  17. 17.
    Dickson DW, Baker M, Rademakers R (2010) Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly. Neurodegener Dis 7(1–3):170–174. doi:10.1159/000289231 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Dickson DW, Davies P, Bevona C, Van Hoeven KH, Factor SM, Grober E, Aronson MK, Crystal HA (1994) Hippocampal sclerosis: a common pathological feature of dementia in very old (≥80 years of age) humans. Acta Neuropathol 88(3):212–221PubMedCrossRefGoogle Scholar
  19. 19.
    Dowling NM, Tomaszewski Farias S, Reed BR, Sonnen JA, Strauss ME, Schneider JA, Bennett DA, Mungas D (2010) Neuropathological associates of multiple cognitive functions in two community-based cohorts of older adults. J Int Neuropsychol Soc 1–13. doi:10.1017/S1355617710001426
  20. 20.
    Dudbridge F, Gusnanto A (2008) Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 32(3):227–234. doi:10.1002/gepi.20297 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Engels H, Bosse K, Ehrbrecht A, Zahn S, Hoischen A, Propping P, Bindl L, Reutter H (2002) Further case of Cantu syndrome: exclusion of cryptic subtelomeric chromosome aberrations. Am J Med Genet 111(2):205–209. doi:10.1002/ajmg.10560 PubMedCrossRefGoogle Scholar
  22. 22.
    Flagg TP, Enkvetchakul D, Koster JC, Nichols CG (2010) Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 90(3):799–829. doi:10.1152/physrev.00027.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt S, Johnson N, Juettemann T, Kahari AK, Keenan S, Kulesha E, Martin FJ, Maurel T, McLaren WM, Murphy DN, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ruffier M, Sheppard D, Taylor K, Thormann A, Trevanion SJ, Vullo A, Wilder SP, Wilson M, Zadissa A, Aken BL, Birney E, Cunningham F, Harrow J, Herrero J, Hubbard TJ, Kinsella R, Muffato M, Parker A, Spudich G, Yates A, Zerbino DR, Searle SM (2014) Ensembl 2014. Nucleic Acids Res 42 (Database issue):D749–755. doi:10.1093/nar/gkt1196
  24. 24.
    Garner C (2007) Upward bias in odds ratio estimates from genome-wide association studies. Genet Epidemiol 31(4):288–295. doi:10.1002/gepi.20209 PubMedCrossRefGoogle Scholar
  25. 25.
    Gauderman WJ (2002) Sample size requirements for matched case–control studies of gene–environment interaction. Stat Med 21(1):35–50PubMedCrossRefGoogle Scholar
  26. 26.
    Harakalova M, van Harssel JJ, Terhal PA, van Lieshout S, Duran K, Renkens I, Amor DJ, Wilson LC, Kirk EP, Turner CL, Shears D, Garcia-Minaur S, Lees MM, Ross A, Venselaar H, Vriend G, Takanari H, Rook MB, van der Heyden MA, Asselbergs FW, Breur HM, Swinkels ME, Scurr IJ, Smithson SF, Knoers NV, van der Smagt JJ, Nijman IJ, Kloosterman WP, van Haelst MM, van Haaften G, Cuppen E (2012) Dominant missense mutations in ABCC9 cause Cantu syndrome. Nat Genet 44(7):793–796. doi:10.1038/ng.2324 PubMedCrossRefGoogle Scholar
  27. 27.
    Hiraki Y, Miyatake S, Hayashidani M, Nishimura Y, Matsuura H, Kamada M, Kawagoe T, Yunoki K, Okamoto N, Yofune H, Nakashima M, Tsurusaki Y, Satisu H, Murakami A, Miyake N, Nishimura G, Matsumoto N (2014) Aortic aneurysm and craniosynostosis in a family with Cantu syndrome. Am J Med Genet Part A 164A(1):231–236. doi:10.1002/ajmg.a.36228 PubMedCrossRefGoogle Scholar
  28. 28.
    Hoggart CJ, Clark TG, De Iorio M, Whittaker JC, Balding DJ (2008) Genome-wide significance for dense SNP and resequencing data. Genet Epidemiol 32(2):179–185. doi:10.1002/gepi.20292 PubMedCrossRefGoogle Scholar
  29. 29.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O’Donovan M, Amouyel P, Williams J (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435. doi:10.1038/ng.803 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Holm K, Melum E, Franke A, Karlsen TH (2010) SNPexp––a web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels. BMC Bioinform 11:600. doi:10.1186/1471-2105-11-600 CrossRefGoogle Scholar
  31. 31.
    Holmans P, Hamshere M, Hollingworth P, Rice F, Tunstall N, Jones S, Moore P, Wavrant DeVrieze F, Myers A, Crook R, Compton D, Marshall H, Meyer D, Shears S, Booth J, Ramic D, Williams N, Norton N, Abraham R, Kehoe P, Williams H, Rudrasingham V, O’Donovan M, Jones L, Hardy J, Goate A, Lovestone S, Owen M, Williams J (2005) Genome screen for loci influencing age at onset and rate of decline in late onset Alzheimer’s disease. Am J Med Genet Part B, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet 135B(1):24–32. doi:10.1002/ajmg.b.30114 CrossRefGoogle Scholar
  32. 32.
    Hu D, Barajas-Martinez H, Terzic A, Park S, Pfeiffer R, Burashnikov E, Wu Y, Borggrefe M, Veltmann C, Schimpf R, Cai JJ, Nam GB, Deshmukh P, Scheinman M, Preminger M, Steinberg J, Lopez-Izquierdo A, Ponce-Balbuena D, Wolpert C, Haissaguerre M, Sanchez-Chapula JA, Antzelevitch C (2014) ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. Int J Cardiol 171(3):431–442. doi:10.1016/j.ijcard.2013.12.084 PubMedCrossRefGoogle Scholar
  33. 33.
    Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16(5):1011–1017PubMedCrossRefGoogle Scholar
  34. 34.
    Iwasa H, Kurabayashi M, Nagai R, Nakamura Y, Tanaka T (2001) Multiple single-nucleotide polymorphisms (SNPs) in the Japanese population in six candidate genes for long QT syndrome. J Hum Genet 46(3):158–162. doi:10.1007/s100380170106 PubMedCrossRefGoogle Scholar
  35. 35.
    Jicha GA, Abner E, Schmitt FA, Cooper GE, Stiles N, Hamon R, Carr S, Smith CD, Markesbery WR (2008) Clinical features of mild cognitive impairment differ in the research and tertiary clinic settings. Dement Geriatr Cogn Disord 26(2):187–192. doi:10.1159/000151635 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M, Rademakers R, Boeve BF, Parisi JE, Smith GE, Ivnik RJ, Petersen RC, Jack CR Jr, Dickson DW (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70(19 Pt 2):1850–1857. doi:10.1212/01.wnl.0000304041.09418.b1 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM, Petrucelli L, Senjem ML, Knopman DS, Boeve BF, Ivnik RJ, Smith GE, Jack CR Jr, Parisi JE, Petersen RC, Dickson DW (2014) TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. doi:10.1007/s00401-014-1269-z Google Scholar
  38. 38.
    Kane GC, Liu XK, Yamada S, Olson TM, Terzic A (2005) Cardiac KATP channels in health and disease. J Mol Cell Cardiol 38(6):937–943. doi:10.1016/j.yjmcc.2005.02.026 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, Jun G, Destefano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thornton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Hollingworth P, Ramirez A, Hanon O, Fitzpatrick AL, Buxbaum JD, Campion D, Crane PK, Baldwin C, Becker T, Gudnason V, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Moron FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fievet N, Huentelman MJ, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuinness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, European Alzheimer’s Disease I, Genetic, Environmental Risk in Alzheimer’s D, Alzheimer’s Disease Genetic C, Cohorts for H, Aging Research in Genomic E, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannfelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O’Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH, Jr., Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltunen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nothen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. doi:10.1038/ng.2802
  40. 40.
    Lemos RR, Oliveira DF, Zatz M, Oliveira JR (2011) Population and computational analysis of the MGEA6 P521A variation as a risk factor for familial idiopathic basal ganglia calcification (Fahr’s disease). J Mol Neurosci: MN 43(3):333–336. doi:10.1007/s12031-010-9445-7 PubMedCrossRefGoogle Scholar
  41. 41.
    Leverenz JB, Agustin CM, Tsuang D, Peskind ER, Edland SD, Nochlin D, DiGiacomo L, Bowen JD, McCormick WC, Teri L, Raskind MA, Kukull WA, Larson EB (2002) Clinical and neuropathological characteristics of hippocampal sclerosis: a community-based study. Arch Neurol 59(7):1099–1106PubMedCrossRefGoogle Scholar
  42. 42.
    Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, Holm IE, Ince PG, Kamphorst W, Revesz T, Rozemuller AJ, Kumar-Singh S, Akiyama H, Baborie A, Spina S, Dickson DW, Trojanowski JQ, Mann DM (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119(1):1–4. doi:10.1007/s00401-009-0612-2 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK, Aarsland D, Arai H, Ballard CG, Boeve B, Burn DJ, Costa D, Del Ser T, Dubois B, Galasko D, Gauthier S, Goetz CG, Gomez-Tortosa E, Halliday G, Hansen LA, Hardy J, Iwatsubo T, Kalaria RN, Kaufer D, Kenny RA, Korczyn A, Kosaka K, Lee VM, Lees A, Litvan I, Londos E, Lopez OL, Minoshima S, Mizuno Y, Molina JA, Mukaetova-Ladinska EB, Pasquier F, Perry RH, Schulz JB, Trojanowski JQ, Yamada M (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12):1863–1872. doi:10.1212/01.wnl.0000187889.17253.b1 PubMedCrossRefGoogle Scholar
  44. 44.
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, Hyman BT, National Institute on A, Alzheimer’s A (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11. doi:10.1007/s00401-011-0910-3 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Montine TJ, Sonnen JA, Montine KS, Crane PK, Larson EB (2012) Adult Changes in Thought study: dementia is an individually varying convergent syndrome with prevalent clinically silent diseases that may be modified by some commonly used therapeutics. Curr Alzheimer Res 9(6):718–723PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Mortimer JA (2012) The Nun Study: risk factors for pathology and clinical-pathologic correlations. Curr Alzheimer Res 9(6):621–627PubMedCrossRefGoogle Scholar
  47. 47.
    Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, George-Hyslop PS, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, Decarli C, Dekosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. doi:10.1038/ng.801 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Nelson PT, Abner EL, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD, Davis DG, Poduska JW, Patel E, Mendiondo MS, Markesbery WR (2010) Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons. Brain Pathol 20(1):66–79. doi:10.1111/j.1750-3639.2008.00244.x PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Nelson PT, Head E, Schmitt FA, Davis PR, Neltner JH, Jicha GA, Abner EL, Smith CD, Van Eldik LJ, Kryscio RJ, Scheff SW (2011) Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 121(5):571–587. doi:10.1007/s00401-011-0826-y PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Nelson PT, Schmitt FA, Lin Y, Abner EL, Jicha GA, Patel E, Thomason PC, Neltner JH, Smith CD, Santacruz KS, Sonnen JA, Poon LW, Gearing M, Green RC, Woodard JL, Van Eldik LJ, Kryscio RJ (2011) Hippocampal sclerosis in advanced age: clinical and pathological features. Brain 134(Pt 5):1506–1518. doi:10.1093/brain/awr053 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Nelson PT, Smith CD, Abner EL, Wilfred BJ, Wang WX, Neltner JH, Baker M, Fardo DW, Kryscio RJ, Scheff SW, Jicha GA, Jellinger KA, Van Eldik LJ, Schmitt FA (2013) Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol 126(2):161–177. doi:10.1007/s00401-013-1154-1 PubMedCrossRefGoogle Scholar
  52. 52.
    Neltner JH, Abner EL, Baker S, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD, Hammack E, Kukull WA, Brenowitz WD, Van Eldik LJ, Nelson PT (2013) Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing. Brain. doi:10.1093/brain/awt318 PubMedGoogle Scholar
  53. 53.
    Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y, Forman MS, Troost D, Kretzschmar HA, Trojanowski JQ, Lee VM (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117(2):137–149. doi:10.1007/s00401-008-0477-9 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. doi:10.1126/science.1134108 PubMedCrossRefGoogle Scholar
  55. 55.
    Nichols CG, Singh GK, Grange DK (2013) KATP channels and cardiovascular disease: suddenly a syndrome. Circ Res 112(7):1059–1072. doi:10.1161/CIRCRESAHA.112.300514 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Oliveira JR, Sobrido MJ, Spiteri E, Hopfer S, Meroni G, Petek E, Baquero M, Geschwind DH (2007) Analysis of candidate genes at the IBGC1 locus associated with idiopathic basal ganglia calcification (“Fahr’s disease”). J Mol Neurosci: MN 33(2):151–154PubMedCrossRefGoogle Scholar
  57. 57.
    Pao WC, Dickson DW, Crook JE, Finch NA, Rademakers R, Graff-Radford NR (2011) Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis Assoc Disord 25(4):364–368. doi:10.1097/WAD.0b013e31820f8f50 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Parsons MJ, Lester KJ, Barclay NL, Nolan PM, Eley TC, Gregory AM (2013) Replication of Genome-Wide Association Studies (GWAS) loci for sleep in the British G1219 cohort. Am J Med Genet Part B, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet 162B(5):431–438. doi:10.1002/ajmg.b.32106 CrossRefGoogle Scholar
  59. 59.
    Poon LW, Clayton GM, Martin P, Johnson MA, Courtenay BC, Sweaney AL, Merriam SB, Pless BS, Thielman SB (1992) The Georgia Centenarian Study. Int J Aging Hum Dev 34(1):1–17PubMedCrossRefGoogle Scholar
  60. 60.
    Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26(18):2336–2337. doi:10.1093/bioinformatics/btq419 PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, Finch N, Rutherford NJ, Crook RJ, Josephs KA, Boeve BF, Knopman DS, Petersen RC, Parisi JE, Caselli RJ, Wszolek ZK, Uitti RJ, Feldman H, Hutton ML, Mackenzie IR, Graff-Radford NR, Dickson DW (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17(23):3631–3642. doi:10.1093/hmg/ddn257 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Rauramaa T, Pikkarainen M, Englund E, Ince PG, Jellinger K, Paetau A, Alafuzoff I (2013) Consensus recommendations on pathologic changes in the hippocampus: a postmortem multicenter inter-rater study. J Neuropathol Exp Neurol 72(6):452–461. doi:10.1097/NEN.0b013e318292492a PubMedCrossRefGoogle Scholar
  63. 63.
    Rutherford NJ, Carrasquillo MM, Li M, Bisceglio G, Menke J, Josephs KA, Parisi JE, Petersen RC, Graff-Radford NR, Younkin SG, Dickson DW, Rademakers R (2012) TMEM106B risk variant is implicated in the pathologic presentation of Alzheimer disease. Neurology 79(7):717–718. doi:10.1212/WNL.0b013e318264e3ac PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Sampathu DM, Neumann M, Kwong LK, Chou TT, Micsenyi M, Truax A, Bruce J, Grossman M, Trojanowski JQ, Lee VM (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 169(4):1343–1352PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Schmitt FA, Nelson PT, Abner E, Scheff S, Jicha GA, Smith C, Cooper G, Mendiondo M, Danner DD, Van Eldik LJ, Caban-Holt A, Lovell MA, Kryscio RJ (2012) University of Kentucky Sanders-Brown healthy brain aging volunteers: donor characteristics, procedures and neuropathology. Curr Alzheimer Res 9(6):724–733PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Scott WK, Grubber JM, Abou-Donia SM, Church TD, Saunders AM, Roses AD, Pericak-Vance MA, Conneally PM, Small GW, Haines JL (1999) Further evidence linking late-onset Alzheimer disease with chromosome 12. JAMA, J Am Med Assoc 281(6):513–514CrossRefGoogle Scholar
  67. 67.
    Scurr I, Wilson L, Lees M, Robertson S, Kirk E, Turner A, Morton J, Kidd A, Shashi V, Stanley C, Berry M, Irvine AD, Goudie D, Turner C, Brewer C, Smithson S (2011) Cantu syndrome: report of nine new cases and expansion of the clinical phenotype. Am J Med Genet Part A 155A(3):508–518. doi:10.1002/ajmg.a.33885 PubMedCrossRefGoogle Scholar
  68. 68.
    Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 81(2):133–176PubMedCrossRefGoogle Scholar
  69. 69.
    Sonnen JA, Larson EB, Crane PK, Haneuse S, Li G, Schellenberg GD, Craft S, Leverenz JB, Montine TJ (2007) Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol 62(4):406–413. doi:10.1002/ana.21208 PubMedCrossRefGoogle Scholar
  70. 70.
    Stouffer SA, Suchman EA, De Vinney LC, Star SA, Williams RM (1949) The American Soldier: adjustment during army life. Princeton University Press, PrincetonGoogle Scholar
  71. 71.
    Team RC (2013) R: a language and environment for statistical computing. http://www.R-project.org/
  72. 72.
    Troncoso JC, Kawas CH, Chang CK, Folstein MF, Hedreen JC (1996) Lack of association of the apoE4 allele with hippocampal sclerosis dementia. Neurosci Lett 204(1–2):138–140PubMedCrossRefGoogle Scholar
  73. 73.
    Tschanz JT, Treiber K, Norton MC, Welsh-Bohmer KA, Toone L, Zandi PP, Szekely CA, Lyketsos C, Breitner JC (2005) A population study of Alzheimer’s disease: findings from the Cache County Study on memory, health, and aging. Care Manag J 6(2):107–114PubMedCrossRefGoogle Scholar
  74. 74.
    Tyas SL, Snowdon DA, Desrosiers MF, Riley KP, Markesbery WR (2007) Healthy ageing in the Nun Study: definition and neuropathologic correlates. Age Ageing 36(6):650–655. doi:10.1093/ageing/afm120 PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    van Bon BW, Gilissen C, Grange DK, Hennekam RC, Kayserili H, Engels H, Reutter H, Ostergaard JR, Morava E, Tsiakas K, Isidor B, Le Merrer M, Eser M, Wieskamp N, de Vries P, Steehouwer M, Veltman JA, Robertson SP, Brunner HG, de Vries BB, Hoischen A (2012) Cantu syndrome is caused by mutations in ABCC9. Am J Hum Genet 90(6):1094–1101. doi:10.1016/j.ajhg.2012.04.014 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Van Langenhove T, van der Zee J, Van Broeckhoven C (2012) The molecular basis of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum. Ann Med 44(8):817–828. doi:10.3109/07853890.2012.665471 PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Wu J, Hu J, Chen YP, Takeo T, Suga S, Dechon J, Liu Q, Yang KC, St John PA, Hu G, Wang H, Wakui M (2006) Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta. J Pharmacol Exp Ther 319(1):155–164. doi:10.1124/jpet.106.106286 PubMedCrossRefGoogle Scholar
  78. 78.
    Ye B, Kroboth SL, Pu JL, Sims JJ, Aggarwal NT, McNally EM, Makielski JC, Shi NQ (2009) Molecular identification and functional characterization of a mitochondrial sulfonylurea receptor 2 splice variant generated by intraexonic splicing. Circ Res 105(11):1083–1093. doi:10.1161/CIRCRESAHA.109.195040 PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Zarow C, Sitzer TE, Chui HC (2008) Understanding hippocampal sclerosis in the elderly: epidemiology, characterization, and diagnostic issues. Curr Neurol Neurosci Rep 8(5):363–370PubMedCrossRefGoogle Scholar
  80. 80.
    Zarow C, Weiner MW, Ellis WG, Chui HC (2012) Prevalence, laterality, and comorbidity of hippocampal sclerosis in an autopsy sample. Brain Behav 2(4):435–442. doi:10.1002/brb3.66 PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Zhong H, Prentice RL (2008) Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics 9(4):621–634. doi:10.1093/biostatistics/kxn001 PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G (2008) Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 12(5A):1559–1570. doi:10.1111/j.1582-4934.2007.00144.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter T. Nelson
    • 17
  • Steven Estus
    • 1
  • Erin L. Abner
    • 1
  • Ishita Parikh
    • 1
  • Manasi Malik
    • 1
  • Janna H. Neltner
    • 1
  • Eseosa Ighodaro
    • 1
  • Wang-Xia Wang
    • 1
  • Bernard R. Wilfred
    • 1
  • Li-San Wang
    • 2
  • Walter A. Kukull
    • 3
  • Kannabiran Nandakumar
    • 4
  • Mark L. Farman
    • 1
  • Wayne W. Poon
    • 5
  • Maria M. Corrada
    • 5
  • Claudia H. Kawas
    • 5
  • David H. Cribbs
    • 5
  • David A. Bennett
    • 6
  • Julie A. Schneider
    • 6
  • Eric B. Larson
    • 7
  • Paul K. Crane
    • 3
  • Otto Valladares
    • 2
  • Frederick A. Schmitt
    • 1
  • Richard J. Kryscio
    • 1
  • Gregory A. Jicha
    • 1
  • Charles D. Smith
    • 1
  • Stephen W. Scheff
    • 1
  • Joshua A. Sonnen
    • 8
  • Jonathan L. Haines
    • 9
  • Margaret A. Pericak-Vance
    • 10
  • Richard Mayeux
    • 11
  • Lindsay A. Farrer
    • 12
  • Linda J. Van Eldik
    • 1
  • Craig Horbinski
    • 1
  • Robert C. Green
    • 13
  • Marla Gearing
    • 14
  • Leonard W. Poon
    • 18
  • Patricia L. Kramer
    • 15
  • Randall L. Woltjer
    • 15
  • Thomas J. Montine
    • 3
  • Amanda B. Partch
    • 2
  • Alexander J. Rajic
    • 5
  • KatieRose Richmire
    • 7
  • Sarah E. Monsell
    • 3
  • Alzheimer’ Disease Genetic Consortium
  • Gerard D. Schellenberg
    • 2
  • David W. Fardo
    • 16
  1. 1.University of KentuckyLexingtonUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA
  3. 3.University of WashingtonSeattleUSA
  4. 4.Mayo ClinicRochesterUSA
  5. 5.University of California, IrvineIrvineUSA
  6. 6.Rush UniversityChicagoUSA
  7. 7.Group Health Research InstituteSeattleUSA
  8. 8.University of UtahSalt Lake CityUSA
  9. 9.Case Western Reserve UniversityClevelandUSA
  10. 10.University of MiamiMiamiUSA
  11. 11.Columbia UniversityNew YorkUSA
  12. 12.Boston UniversityBostonUSA
  13. 13.Harvard UniversityBostonUSA
  14. 14.Emory UniversityAtlantaUSA
  15. 15.Oregon Health and Sciences UniversityPortlandUSA
  16. 16.Department of BiostatisticsUniversity of KentuckyLexingtonUSA
  17. 17.Department of Pathology, Division of Neuropathology, Rm 311, Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA
  18. 18.Institute of Gerontology, University of GeorgiaAthensUSA

Personalised recommendations