Advertisement

Acta Neuropathologica

, Volume 128, Issue 4, pp 597–604 | Cite as

FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion

  • Dirk Bäumer
  • Simon Z. East
  • Bing Tseu
  • Adam Zeman
  • David Hilton
  • Kevin Talbot
  • Olaf Ansorge
Case Report

Abstract

Polyglutamine expansions in the ataxin-2 gene (ATXN2) cause autosomal dominant spinocerebellar ataxia type 2 (SCA2), but have recently also been associated with amyotrophic lateral sclerosis (ALS). We present clinical and pathological features of a family in which a pathological ATXN2 expansion led to frontotemporal lobar degeneration with ALS (FTLD-ALS) in the index case, but typical SCA2 in a son, and compare the neuropathology with a case of typical SCA2. The index case shares the molecular signature of SCA2 with prominent polyglutamine and p62-positive intranuclear neuronal inclusions mainly in the pontine nuclei, while harbouring more pronounced neocortical and spinal TDP-43 pathology. We conclude that ATXN2 mutations can cause not only ALS, but also a neuropathological overlap syndrome of SCA2 and FTLD presenting clinically as pure FTLD-ALS without ataxia. The cause of the phenotypic heterogeneity remains unexplained, but the presence of a CAA-interrupted CAG repeat in the FTLD case in this family suggests that one potential mechanism may be variation in repeat tract composition between members of the same family.

Keywords

SCA2 Ataxin-2 Amyotrophic lateral sclerosis Frontotemporal lobar degeneration TDP-43 

Notes

Acknowledgments

We are indebted to the family of the index case for supporting this research and their provision of DNA samples. In addition, we are grateful to the department of Clinical Genetics, Churchill Hospital, Oxford, for technical support. We acknowledge the Oxford Brain Bank, supported by the Medical Research Council (MRC), Brains for Dementia Research (BDR) and the NIHR Oxford Biomedical Research Centre. DB is funded by an Oxfordshire Health Services Research Committee (OHSRC)/Nuffield Oxford Hospitals Fund (NOHF)/BRC Fellowship. The Oxford Brain Bank is supported by the Medical Research Council (OA) and Brains for Dementia Research (OA). SE and OA are supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at Oxford University Hospitals NHS Trust and University of Oxford.

References

  1. 1.
    Abe K, Ikeda Y, Kurata T, Ohta Y, Manabe Y, Okamoto M, Takamatsu K, Ohta T, Takao Y, Shiro Y, Shoji M, Kamiya T, Kobayashi H, Koizumi A (2012) Cognitive and affective impairments of a novel SCA/MND crossroad mutation Asidan. Eur J Neurol 19(8):1070–1078. doi: 10.1111/j.1468-1331.2012.03669.x PubMedCrossRefGoogle Scholar
  2. 2.
    Almeida-Silva UC, Hallak JE, Junior WM, Osorio Fde L (2013) Association between spinocerebellar ataxias caused by glutamine expansion and psychiatric and neuropsychological signals—a literature review. Am J Neurodegener Dis 2(2):57–69PubMedPubMedCentralGoogle Scholar
  3. 3.
    Burk K, Globas C, Bosch S, Graber S, Abele M, Brice A, Dichgans J, Daum I, Klockgether T (1999) Cognitive deficits in spinocerebellar ataxia 2. Brain 122(Pt 4):769–777PubMedCrossRefGoogle Scholar
  4. 4.
    Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, Dichgans J (2003) Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 250(2):207–211. doi: 10.1007/s00415-003-0976-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Cancel G, Stevanin G, Durr A, Chneiweiss H, Penet C, Pothin Y, Agid Y, Brice A (1995) SCA2 is not a major locus for ADCA type I in French families. Am J Med Genet 60(5):382–385. doi: 10.1002/ajmg.1320600507 PubMedCrossRefGoogle Scholar
  6. 6.
    Chong SS, McCall AE, Cota J, Subramony SH, Orr HT, Hughes MR, Zoghbi HY (1995) Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10(3):344–350. doi: 10.1038/ng0795-344 PubMedCrossRefGoogle Scholar
  7. 7.
    Corrado L, Mazzini L, Oggioni GD, Luciano B, Godi M, Brusco A, D’Alfonso S (2011) ATXN-2 CAG repeat expansions are interrupted in ALS patients. Hum Genet 130(4):575–580. doi: 10.1007/s00439-011-1000-2 PubMedCrossRefGoogle Scholar
  8. 8.
    Daoud H, Belzil V, Martins S, Sabbagh M, Provencher P, Lacomblez L, Meininger V, Camu W, Dupre N, Dion PA, Rouleau GA (2011) Association of long ATXN2 CAG repeat sizes with increased risk of amyotrophic lateral sclerosis. Arch Neurol 68(6):739. doi: 10.1001/archneurol.2011.111 PubMedCrossRefGoogle Scholar
  9. 9.
    Durr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, Bellance R, Buisson GG, Chneiweiss H, Dellanave J et al (1995) Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118(Pt 6):1573–1581PubMedCrossRefGoogle Scholar
  10. 10.
    Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rub U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075. doi: 10.1038/nature09320 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G (1999) Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol 97(3):306–310PubMedCrossRefGoogle Scholar
  12. 12.
    Flot J-F, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6(3):627–630. doi: 10.1111/j.1471-8286.2006.01355.x CrossRefGoogle Scholar
  13. 13.
    Furtado S, Payami H, Lockhart PJ, Hanson M, Nutt JG, Singleton AA, Singleton A, Bower J, Utti RJ, Bird TD, de la Fuente-Fernandez R, Tsuboi Y, Klimek ML, Suchowersky O, Hardy J, Calne DB, Wszolek ZK, Farrer M, Gwinn-Hardy K, Stoessl AJ (2004) Profile of families with Parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov Disord 19(6):622–629. doi: 10.1002/mds.20074 PubMedCrossRefGoogle Scholar
  14. 14.
    Gambardella A, Annesi G, Bono F, Spadafora P, Valentino P, Pasqua AA, Mazzei R, Montesanti R, Conforti FL, Oliveri RL, Zappia M, Aguglia U, Quattrone A (1998) CAG repeat length and clinical features in three Italian families with spinocerebellar ataxia type 2 (SCA2): early impairment of Wisconsin card sorting test and saccade velocity. J Neurol 245(10):647–652PubMedCrossRefGoogle Scholar
  15. 15.
    Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM (1997) The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet 60(4):842–850PubMedPubMedCentralGoogle Scholar
  16. 16.
    Gierga K, Burk K, Bauer M, Orozco Diaz G, Auburger G, Schultz C, Vuksic M, Schols L, de Vos RA, Braak H, Deller T, Rub U (2005) Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol 109(6):617–631. doi: 10.1007/s00401-005-1014-8 PubMedCrossRefGoogle Scholar
  17. 17.
    Gispert S, Kurz A, Waibel S, Bauer P, Liepelt I, Geisen C, Gitler AD, Becker T, Weber M, Berg D, Andersen PM, Kruger R, Riess O, Ludolph AC, Auburger G (2012) The modulation of amyotrophic lateral sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiol Dis 45(1):356–361. doi: 10.1016/j.nbd.2011.08.021 PubMedCrossRefGoogle Scholar
  18. 18.
    Giunti P, Sabbadini G, Sweeney MG, Davis MB, Veneziano L, Mantuano E, Federico A, Plasmati R, Frontali M, Wood NW (1998) The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families. Frequency, clinical and genetic correlates. Brain 121(Pt 3):459–467PubMedCrossRefGoogle Scholar
  19. 19.
    Hart MP, Brettschneider J, Lee VM, Trojanowski JQ, Gitler AD (2012) Distinct TDP-43 pathology in ALS patients with ataxin 2 intermediate-length polyQ expansions. Acta Neuropathol 124(2):221–230. doi: 10.1007/s00401-012-0985-5 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hayes S, Turecki G, Brisebois K, Lopes-Cendes I, Gaspar C, Riess O, Ranum LP, Pulst SM, Rouleau GA (2000) CAG repeat length in RAI1 is associated with age at onset variability in spinocerebellar ataxia type 2 (SCA2). Hum Mol Genet 9(12):1753–1758PubMedCrossRefGoogle Scholar
  21. 21.
    Ikeda Y, Ohta Y, Kobayashi H, Okamoto M, Takamatsu K, Ota T, Manabe Y, Okamoto K, Koizumi A, Abe K (2012) Clinical features of SCA36: a novel spinocerebellar ataxia with motor neuron involvement (Asidan). Neurology 79(4):333–341. doi: 10.1212/WNL.0b013e318260436f PubMedCrossRefGoogle Scholar
  22. 22.
    Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14(3):285–291. doi: 10.1038/ng1196-285 PubMedCrossRefGoogle Scholar
  23. 23.
    Infante J, Berciano J, Volpini V, Corral J, Polo JM, Pascual J, Combarros O (2004) Spinocerebellar ataxia type 2 with levodopa-responsive Parkinsonism culminating in motor neuron disease. Mov Disord 19(7):848–852. doi: 10.1002/mds.20090 PubMedCrossRefGoogle Scholar
  24. 24.
    Kim JM, Hong S, Kim GP, Choi YJ, Kim YK, Park SS, Kim SE, Jeon BS (2007) Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism. Arch Neurol 64(10):1510–1518. doi: 10.1001/archneur.64.10.1510 PubMedCrossRefGoogle Scholar
  25. 25.
    Koyano S, Uchihara T, Fujigasaki H, Nakamura A, Yagishita S, Iwabuchi K (1999) Neuronal intranuclear inclusions in spinocerebellar ataxia type 2: triple-labeling immunofluorescent study. Neurosci Lett 273(2):117PubMedCrossRefGoogle Scholar
  26. 26.
    Laffita-Mesa JM, Bauer PO, Kouri V, Pena Serrano L, Roskams J, Almaguer Gotay D, Montes Brown JC, Martinez Rodriguez PA, Gonzalez-Zaldivar Y, Almaguer Mederos L, Cuello-Almarales D, Aguiar Santiago J (2012) Epigenetics DNA methylation in the core ataxin-2 gene promoter: novel physiological and pathological implications. Hum Genet 131(4):625. doi: 10.1007/s00439-011-1101-y PubMedCrossRefGoogle Scholar
  27. 27.
    Le Pira F, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, Nicoletti A, Giuffrida S (2002) Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci 201(1–2):53–57PubMedCrossRefGoogle Scholar
  28. 28.
    Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, de Carvalho M, Meyer T, Tysnes OB, Auburger G, Gispert S, Bonini NM, Andersen PM, Gitler AD (2011) Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 20(9):1697–1700. doi: 10.1093/hmg/ddr045 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Liu X, Lu M, Tang L, Zhang N, Chui D, Fan D (2013) ATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 34(9):2236 e2235–2236 e2238. doi: 10.1016/j.neurobiolaging.2013.04.009 Google Scholar
  30. 30.
    Lu CS, Wu Chou YH, Kuo PC, Chang HC, Weng YH (2004) The Parkinsonian phenotype of spinocerebellar ataxia type 2. Arch Neurol 61(1):35–38. doi: 10.1001/archneur.61.1.35 PubMedCrossRefGoogle Scholar
  31. 31.
    Lu CS, Wu Chou YH, Yen TC, Tsai CH, Chen RS, Chang HC (2002) Dopa-responsive Parkinsonism phenotype of spinocerebellar ataxia type 2. Mov Disord 17(5):1046–1051. doi: 10.1002/mds.10243 PubMedCrossRefGoogle Scholar
  32. 32.
    Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, Perry RH, Trojanowski JQ, Mann DM, Lee VM (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122(1):111–113. doi: 10.1007/s00401-011-0845-8 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nanetti L, Fancellu R, Tomasello C, Gellera C, Pareyson D, Mariotti C (2009) Rare association of motor neuron disease and spinocerebellar ataxia type 2 (SCA2): a new case and review of the literature. J Neurol 256(11):1926–1928. doi: 10.1007/s00415-009-5237-9 PubMedCrossRefGoogle Scholar
  34. 34.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133PubMedCrossRefGoogle Scholar
  35. 35.
    Nihei Y, Ito D, Suzuki N (2012) Roles of ataxin-2 in pathological cascades mediated by TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS). J Biol Chem 287(49):41310. doi: 10.1074/jbc.M112.398099 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Orsi L, D’Agata F, Caroppo P, Franco A, Caglio MM, Avidano F, Manzone C, Mortara P (2011) Neuropsychological picture of 33 spinocerebellar ataxia cases. J Clin Exp Neuropsychol 33(3):315–325. doi: 10.1080/13803395.2010.518139 PubMedCrossRefGoogle Scholar
  37. 37.
    Pang JT, Giunti P, Chamberlain S, An SF, Vitaliani R, Scaravilli T, Martinian L, Wood NW, Scaravilli F, Ansorge O (2002) Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two cases. Brain 125(Pt 3):656–663PubMedCrossRefGoogle Scholar
  38. 38.
    Proukakis C, Houlden H, Schapira AH (2013) Somatic alpha-synuclein mutations in Parkinson’s disease: hypothesis and preliminary data. Mov Disord 28(6):705–712. doi: 10.1002/mds.25502 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14(3):269–276. doi: 10.1038/ng1196-269 PubMedCrossRefGoogle Scholar
  40. 40.
    Pulst SM, Santos N, Wang D, Yang H, Huynh D, Velazquez L, Figueroa KP (2005) Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain 128(Pt 10):2297–2303. doi: 10.1093/brain/awh586 PubMedCrossRefGoogle Scholar
  41. 41.
    Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Consortium I, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. doi: 10.1016/j.neuron.2011.09.010 Google Scholar
  42. 42.
    Reynaldo-Arminan RD, Reynaldo-Hernandez R, Paneque-Herrera M, Prieto-Avila L, Perez-Ruiz E (2002) Mental disorders in patients with spinocerebellar ataxia type 2 in Cuba. Rev Neurol 35(9):818–821PubMedGoogle Scholar
  43. 43.
    Ross OA, Rutherford NJ, Baker M, Soto-Ortolaza AI, Carrasquillo MM, DeJesus-Hernandez M, Adamson J, Li M, Volkening K, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Woodruff BK, Knopman DS, White CL 3rd, Van Gerpen JA, Meschia JF, Mackenzie IR, Boylan K, Boeve BF, Miller BL, Strong MJ, Uitti RJ, Younkin SG, Graff-Radford NR, Petersen RC, Wszolek ZK, Dickson DW, Rademakers R (2011) Ataxin-2 repeat-length variation and neurodegeneration. Hum Mol Genet 20(16):3207. doi: 10.1093/hmg/ddr227 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rub U, Seidel K, Ozerden I, Gierga K, Brunt ER, Schols L, de Vos RA, den Dunnen W, Schultz C, Auburger G, Deller T (2007) Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev 53(2):235–249. doi: 10.1016/j.brainresrev.2006.08.003 PubMedCrossRefGoogle Scholar
  45. 45.
    Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14(3):277–284. doi: 10.1038/ng1196-277 PubMedCrossRefGoogle Scholar
  46. 46.
    Shan DE, Soong BW, Sun CM, Lee SJ, Liao KK, Liu RS (2001) Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive Parkinsonism. Ann Neurol 50(6):812–815PubMedCrossRefGoogle Scholar
  47. 47.
    Sobczak K, Krzyzosiak WJ (2005) CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J Biol Chem 280(5):3898–3910. doi: 10.1074/jbc.M409984200 PubMedCrossRefGoogle Scholar
  48. 48.
    Storey E, Forrest SM, Shaw JH, Mitchell P, Gardner RJ (1999) Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol 56(1):43–50PubMedCrossRefGoogle Scholar
  49. 49.
    Takao M, Aoyama M, Ishikawa K, Sakiyama Y, Yomono H, Saito Y, Kurisaki H, Mihara B, Murayama S (2011) Spinocerebellar ataxia type 2 is associated with Parkinsonism and Lewy body pathology. BMJ Case Rep. doi: 10.1136/bcr.01.2011.3685 Google Scholar
  50. 50.
    Tazen S, Figueroa K, Kwan JY, Goldman J, Hunt A, Sampson J, Gutmann L, Pulst SM, Mitsumoto H, Kuo SH (2013) Amyotrophic lateral sclerosis and spinocerebellar ataxia type 2 in a family with full CAG repeat expansions of ATXN2. JAMA Neurol. doi: 10.1001/jamaneurol.2013.443 PubMedPubMedCentralGoogle Scholar
  51. 51.
    Toyoshima Y, Tanaka H, Shimohata M, Kimura K, Morita T, Kakita A, Takahashi H (2011) Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology. Acta Neuropathol 122(3):375–378. doi: 10.1007/s00401-011-0862-7 PubMedCrossRefGoogle Scholar
  52. 52.
    Van Damme P, Veldink JH, van Blitterswijk M, Corveleyn A, van Vught PW, Thijs V, Dubois B, Matthijs G, van den Berg LH, Robberecht W (2011) Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76(24):2066–2072. doi: 10.1212/WNL.0b013e31821f445b PubMedCrossRefGoogle Scholar
  53. 53.
    Van Langenhove T, van der Zee J, Engelborghs S, Vandenberghe R, Santens P, Van den Broeck M, Mattheijssens M, Peeters K, Nuytten D, Cras P, De Deyn PP, De Jonghe P, Cruts M, Van Broeckhoven C (2012) Ataxin-2 polyQ expansions in FTLD-ALS spectrum disorders in Flanders-Belgian cohorts. Neurobiol Aging 33(5):1004 e1017–1004 e1020. doi: 10.1016/j.neurobiolaging.2011.09.025 Google Scholar
  54. 54.
    Wojciechowska M, Krzyzosiak WJ (2011) CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders. RNA Biol 8(4):565–571. doi: 10.4161/rna.8.4.15397 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M, Markowski TW, Ingram MA, Nan Z, Forster C, Low WC, Schoser B, Somia NV, Clark HB, Schmechel S, Bitterman PB, Gourdon G, Swanson MS, Moseley M, Ranum LP (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 108(1):260–265. doi: 10.1073/pnas.1013343108 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dirk Bäumer
    • 1
    • 2
  • Simon Z. East
    • 1
  • Bing Tseu
    • 1
  • Adam Zeman
    • 3
  • David Hilton
    • 4
  • Kevin Talbot
    • 2
  • Olaf Ansorge
    • 1
    • 2
  1. 1.Department of NeuropathologyJohn Radcliffe Hospital, University of OxfordOxfordUK
  2. 2.Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUK
  3. 3.University of Exeter Medical School, St Luke’s CampusExeterUK
  4. 4.Department of Cellular and Anatomical PathologyDerriford HospitalPlymouthUK

Personalised recommendations