Acta Neuropathologica

, Volume 127, Issue 5, pp 645–665 | Cite as

Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice

  • Amanda N. Sacino
  • Mieu Brooks
  • Michael A. Thomas
  • Alex B. McKinney
  • Nicholas H. McGarvey
  • Nicola J. Rutherford
  • Carolina Ceballos-Diaz
  • Janice Robertson
  • Todd E. Golde
  • Benoit I. Giasson
Original Paper

Abstract

In order to further evaluate the parameters whereby intracerebral administration of recombinant α-synuclein (αS) induces pathological phenotypes in mice, we conducted a series of studies where αS fibrils were injected into the brains of M83 (A53T) and M47 (E46K) αS transgenic (Tg) mice, and non-transgenic (nTg) mice. Using multiple markers to assess αS inclusion formation, we find that injected fibrillar human αS induced widespread cerebral αS inclusion formation in the M83 Tg mice, but in both nTg and M47 Tg mice, induced αS inclusion pathology is largely restricted to the site of injection. Furthermore, mouse αS fibrils injected into nTg mice brains also resulted in inclusion pathology restricted to the site of injection with no evidence for spread. We find no compelling evidence for extensive spread of αS pathology within white matter tracts, and we attribute previous reports of white matter tract spreading to cross-reactivity of the αS pSer129/81A antibody with phosphorylated neurofilament subunit L. These studies suggest that, with the exception of the M83 Tg mice which appear to be uniquely susceptible to induction of inclusion pathology by exogenous forms of αS, there are significant barriers in mice to widespread induction of αS pathology following intracerebral administration of amyloidogenic αS.

Keywords

Amyloid Parkinson’s disease Pathology α-Synuclein Transgenic mice 

Supplementary material

401_2014_1268_MOESM1_ESM.tif (8 mb)
Supplementary material 1 (TIFF 8148 kb)
401_2014_1268_MOESM2_ESM.tif (8.8 mb)
Supplementary material 2 (TIFF 9057 kb)
401_2014_1268_MOESM3_ESM.tif (7.8 mb)
Supplementary material 3 (TIFF 8010 kb)
401_2014_1268_MOESM4_ESM.tif (8.8 mb)
Supplementary material 4 (TIFF 9036 kb)
401_2014_1268_MOESM5_ESM.tif (7.4 mb)
Supplementary material 5 (TIFF 7585 kb)
401_2014_1268_MOESM6_ESM.tif (4 mb)
Supplementary material 6 (TIFF 4071 kb)
401_2014_1268_MOESM7_ESM.tif (1.3 mb)
Supplementary material 7 (TIFF 1336 kb)
401_2014_1268_MOESM8_ESM.tif (3.6 mb)
Supplementary material 8 (TIFF 3669 kb)
401_2014_1268_MOESM9_ESM.tif (2.3 mb)
Supplementary material 9 (TIFF 2373 kb)
401_2014_1268_MOESM10_ESM.tif (8.2 mb)
Supplementary material 10 (TIFF 8447 kb)
401_2014_1268_MOESM11_ESM.tif (7.8 mb)
Supplementary material 11 (TIFF 8026 kb)
401_2014_1268_MOESM12_ESM.tif (7.8 mb)
Supplementary material 12 (TIFF 7966 kb)
401_2014_1268_MOESM13_ESM.tif (3.1 mb)
Supplementary material 13 (TIFF 3198 kb)
401_2014_1268_MOESM14_ESM.tif (6.7 mb)
Supplementary material 14 (TIFF 6892 kb)
401_2014_1268_MOESM15_ESM.tif (1.6 mb)
Supplementary material 15 (TIFF 1675 kb)

References

  1. 1.
    Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252PubMedGoogle Scholar
  2. 2.
    Aguzzi A, Heikenwalder M, Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8(7):552–561. doi:10.1038/nrm2204 PubMedGoogle Scholar
  3. 3.
    Alvarez-Erviti L, Couch Y, Richardson J, Cooper JM, Wood MJ (2011) Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neurosci Res 69(4):337–342. doi:10.1016/j.neures.2010.12.020 PubMedGoogle Scholar
  4. 4.
    Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752. doi:10.1074/jbc.M600933200 PubMedGoogle Scholar
  5. 5.
    Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-Tu C, Trinh J, Aasly JO, Rajput A, Rajput AH, Jon SA, Farrer MJ (2013) Alpha-synuclein p. H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 28:811–813PubMedGoogle Scholar
  6. 6.
    Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, Akiyama H, Caviness JN, Shill HA, Sabbagh MN, Walker DG, Arizona Parkinson’s disease C (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119(6):689–702. doi:10.1007/s00401-010-0664-3 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Beraud D, Twomey M, Bloom B, Mittereder A, Ton V, Neitzke K, Chasovskikh S, Mhyre TR, Maguire-Zeiss KA (2011) Alpha-Synuclein alters toll-like receptor expression. Front Neurosci 5:80PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Bockmann A, Meier BH, Melki R (2013) Structural and functional characterization of two alpha-synuclein strains. Nature Commun 4:2575. doi:10.1038/ncomms3575 Google Scholar
  9. 9.
    Brundin P, Li JY, Holton JL, Lindvall O, Revesz T (2008) Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci 9(10):741–745PubMedGoogle Scholar
  10. 10.
    Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M (2013) Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS One 8(1):e55375PubMedPubMedCentralGoogle Scholar
  11. 11.
    Comellas G, Lemkau LR, Nieuwkoop AJ, Kloepper KD, Ladror DT, Ebisu R, Woods WS, Lipton AS, George JM, Rienstra CM (2011) Structured regions of alpha-synuclein fibrils include the early-onset Parkinson’s disease mutation sites. J Mol Biol 411(4):881–895. doi:10.1016/j.jmb.2011.06.026 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320PubMedGoogle Scholar
  13. 13.
    Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52PubMedGoogle Scholar
  14. 14.
    Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJ, Anthony DC (2011) The acute inflammatory response to intranigral alpha-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation 8:166. doi:10.1186/1742-2094-8-166 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Cremades N, Cohen SI, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TP, Dobson CM, Klenerman D (2012) Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 149(5):1048–1059. doi:10.1016/j.cell.2012.03.037 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Crystal AS, Giasson BI, Crowe A, Kung MP, Zhuang ZP, Trojanowski JQ, Lee VM (2003) A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. J Neurochem 86(6):1359–1368PubMedGoogle Scholar
  17. 17.
    Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232. doi:10.1523/JNEUROSCI.2617-07.2007 PubMedGoogle Scholar
  18. 18.
    Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273(16):9443–9449PubMedGoogle Scholar
  19. 19.
    Dryanovski DI, Guzman JN, Xie Z, Galteri DJ, Volpicelli-Daley LA, Lee VM, Miller RJ, Schumacker PT, Surmeier DJ (2013) Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci 33(24):10154–10164. doi:10.1523/JNEUROSCI.5311-12.2013 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Duda JE, Giasson BI, Gur TL, Montine TJ, Robertson D, Biaggioni I, Hurtig HI, Stern MB, Gollomp SM, Grossman M, Lee VMY, Trojanowski JQ (2000) Immunohistochemical and biochemical studies demonstrate a distinct profile of alpha-synuclein permutations in multiple system atrophy. J Neuropathol Exp Neurol 59(9):830–841PubMedGoogle Scholar
  21. 21.
    Duda JE, Giasson BI, Mabon ME, Lee VMY, Trojanoswki JQ (2002) Novel antibodies to oxidized α-synuclein reveal abundant neuritic pathology in Lewy body disease. Ann Neurol 52:205–210PubMedGoogle Scholar
  22. 22.
    El-Agnaf OM, Jakes R, Curran MD, Middleton D, Ingenito R, Bianchi E, Pessi A, Neill D, Wallace A (1998) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440(1–2):71–75PubMedGoogle Scholar
  23. 23.
    Emmer KL, Waxman EA, Covy JP, Giasson BI (2011) E46K human alpha-synuclein transgenic mice develop Lewy-like and tau pathology associated with age-dependent, detrimental motor impairment. J Biol Chem 286(40):35104–35118PubMedPubMedCentralGoogle Scholar
  24. 24.
    Eyer J, Peterson A (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12(2):389–405PubMedGoogle Scholar
  25. 25.
    Farrer M, Gwinn-Hardy K, Hutton M, Hardy J (1999) The genetics of disorders with synuclein pathology and parkinsonism. Hum Mol Genet 8(10):1901–1905PubMedGoogle Scholar
  26. 26.
    Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N (2013) Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia 61(3):349–360PubMedPubMedCentralGoogle Scholar
  27. 27.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164PubMedGoogle Scholar
  28. 28.
    Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698PubMedPubMedCentralGoogle Scholar
  29. 29.
    Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS (2011) Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 119(6):807–814PubMedPubMedCentralGoogle Scholar
  30. 30.
    Geisler N, Plessmann U, Weber K (1985) The complete amino acid sequence of the major mammalian neurofilament protein (NF-L). FEBS Lett 182(2):475–478PubMedGoogle Scholar
  31. 31.
    George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15(2):361–372PubMedGoogle Scholar
  32. 32.
    Giasson BI, Duda JE, Forman MS, Lee VMY, Trojanoswki JQ (2001) Prominent perikaryal expression of α- and ß-synuclein in neurons of dorsal root ganglion and in medullary neurons. Exp Neurol 172:354–362PubMedGoogle Scholar
  33. 33.
    Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34(4):521–533PubMedGoogle Scholar
  34. 34.
    Giasson BI, Jakes R, Goedert M, Duda JE, Leight S, Trojanowski JQ, Lee VMY (2000) A panel of epitope-specific antibodies detects protein domains distributed throughout human alpha-synuclein in Lewy bodies of Parkinson’s disease. J Neurosci Res 59(4):528–533PubMedGoogle Scholar
  35. 35.
    Giasson BI, Murray IV, Trojanowski JQ, Lee VMY (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386PubMedGoogle Scholar
  36. 36.
    Giasson BI, Uryu K, Trojanowski JQ, Lee VMY (1999) Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274(12):7619–7622PubMedGoogle Scholar
  37. 37.
    Goedert M (1997) Familial Parkinson’s disease. The awakening of alpha-synuclein. Nature 388(6639):232–233PubMedGoogle Scholar
  38. 38.
    Golde TE, Borchelt DR, Giasson BI, Lewis J (2013) Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 123:1847–1855PubMedPubMedCentralGoogle Scholar
  39. 39.
    Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI (2005) The E46K mutation in alpha-synuclein increases amyloid fibril formation. JBiolChem 280(9):7800–7807Google Scholar
  40. 40.
    Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VM (2013) Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell 154(1):103–117. doi:10.1016/j.cell.2013.05.057 PubMedGoogle Scholar
  41. 41.
    Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, Li JY, Brundin P (2011) Alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121(2):715–725PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hilton D, Stephens M, Kirk L, Edwards P, Potter R, Zajicek J, Broughton E, Hagan H, Carroll C (2013) Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol. doi:10.1007/s00401-013-1214-6 PubMedGoogle Scholar
  43. 43.
    Hoyer W, Antony T, Cherny D, Heim G, Jovin TM, Subramaniam V (2002) Dependence of alpha-synuclein aggregate morphology on solution conditions. J Mol Biol 322(2):383–393PubMedGoogle Scholar
  44. 44.
    Ikemura M, Saito Y, Sengoku R, Sakiyama Y, Hatsuta H, Kanemaru K, Sawabe M, Arai T, Ito G, Iwatsubo T, Fukayama M, Murayama S (2008) Lewy body pathology involves cutaneous nerves. J Neuropathol Exp Neurol 67(10):945–953. doi:10.1097/NEN.0b013e318186de48 PubMedGoogle Scholar
  45. 45.
    Ishii A, Nonaka T, Taniguchi S, Saito T, Arai T, Mann D, Iwatsubo T, Hisanaga S, Goedert M, Hasegawa M (2007) Casein kinase 2 is the major enzyme in brain that phosphorylates Ser129 of human alpha-synuclein: implication for alpha-synucleinopathies. FEBS Lett 581(24):4711–4717. doi:10.1016/j.febslet.2007.08.067 PubMedGoogle Scholar
  46. 46.
    Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14(2):467–475PubMedGoogle Scholar
  47. 47.
    Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32PubMedGoogle Scholar
  48. 48.
    Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. doi:10.1038/nature12481 PubMedPubMedCentralGoogle Scholar
  49. 49.
    Julien JP, Grosveld F, Yazdanbaksh K, Flavell D, Meijer D, Mushynski W (1987) The structure of a human neurofilament gene (NF-L): a unique exon-intron organization in the intermediate filament gene family. Biochim Biophys Acta 909(1):10–20PubMedGoogle Scholar
  50. 50.
    Julien JPMD, Flavel D, Hurst J, Grosveld F (1986) Cloning and developmental expression of the murine neurofilament gene family. Mol Brain Res 1:243–250Google Scholar
  51. 51.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489PubMedGoogle Scholar
  52. 52.
    Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, Proukakis C, Quinn N, Lees AJ, Hardy J, Revesz T, Houlden H, Holton JL (2013) Alpha-synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol 125:753–769PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong LS, Masliah E, Hwang D, Lee HJ, Lee SJ (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562PubMedPubMedCentralGoogle Scholar
  54. 54.
    Klegeris A, Giasson BI, Zhang H, Maguire J, Pelech S, McGeer PL (2006) Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J 20(12):2000–2008PubMedGoogle Scholar
  55. 55.
    Klegeris A, Pelech S, Giasson BI, Maguire J, Zhang H, McGeer EG, McGeer PL (2008) Alpha-synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol Aging 29(5):739–752PubMedGoogle Scholar
  56. 56.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506PubMedGoogle Scholar
  57. 57.
    Kruger R, Muller T, Riess O (2000) Involvement of alpha-synuclein in Parkinson’s disease and other neurodegenerative disorders. J Neural Transm 107(1):31–40PubMedGoogle Scholar
  58. 58.
    Kuusisto E, Parkkinen L, Alafuzoff I (2003) Morphogenesis of Lewy bodies: dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 62(12):1241–1253PubMedGoogle Scholar
  59. 59.
    Lebouvier T, Chaumette T, Damier P, Coron E, Touchefeu Y, Vrignaud S, Naveilhan P, Galmiche JP, Bruley des Varannes S, Derkinderen P, Neunlist M (2008) Pathological lesions in colonic biopsies during Parkinson’s disease. Gut 57(12):1741–1743. doi:10.1136/gut.2008.162503 PubMedGoogle Scholar
  60. 60.
    Lee SB, Park SM, Ahn KJ, Chung KC, Paik SR, Kim J (2009) Identification of the amino acid sequence motif of alpha-synuclein responsible for macrophage activation. Biochem Biophys Res Commun 381(1):39–43PubMedGoogle Scholar
  61. 61.
    Lesage S, Anheim M, Letournel F, Bousset L, Honore A, Rozas N, Pieri L, Madiona K, Durr A, Melki R, Verny C, Brice A (2013) G51D alpha-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73(4):459–471Google Scholar
  62. 62.
    Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503PubMedGoogle Scholar
  63. 63.
    Li JY, Englund E, Widner H, Rehncrona S, Bjorklund A, Lindvall O, Brundin P (2010) Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord 25(8):1091–1096PubMedGoogle Scholar
  64. 64.
    Liu CW, Giasson BI, Lewis KA, Lee VM, Demartino GN, Thomas PJ (2005) A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: implications for pathogenesis of Parkinson disease. J Biol Chem 280(24):22670–22678. doi:10.1074/jbc.M501508200 PubMedGoogle Scholar
  65. 65.
    Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. J Pathol 155(1):9–15PubMedGoogle Scholar
  66. 66.
    Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953PubMedPubMedCentralGoogle Scholar
  67. 67.
    Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209(5):975–986PubMedPubMedCentralGoogle Scholar
  68. 68.
    Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106(47):20051–20056PubMedPubMedCentralGoogle Scholar
  69. 69.
    Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M (2013) Prion-like spreading of pathological alpha-synuclein in brain. Brain 136(Pt 4):1128–1138PubMedPubMedCentralGoogle Scholar
  70. 70.
    Mougenot AL, Nicot S, Bencsik A, Morignat E, Verchere J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33(9):2225–2228PubMedGoogle Scholar
  71. 71.
    Mu L, Sobotka S, Chen J, Su H, Sanders I, Adler CH, Shill HA, Caviness JN, Samanta JE, Beach TG, Arizona Parkinson’s disease C (2013) Alpha-synuclein pathology and axonal degeneration of the peripheral motor nerves innervating pharyngeal muscles in Parkinson disease. J Neuropathol Exp Neurol 72(2):119–129. doi:10.1097/NEN.0b013e3182801cde PubMedPubMedCentralGoogle Scholar
  72. 72.
    Nakamura Y, Hashimoto R, Kashiwagi Y, Wada Y, Sakoda S, Miyamae Y, Kudo T, Takeda M (1999) Casein kinase II is responsible for phosphorylation of NF-L at Ser-473. FEBS Lett 455(1–2):83–86PubMedGoogle Scholar
  73. 73.
    Ono K, Ikeda T, Takasaki J, Yamada M (2011) Familial Parkinson disease mutations influence alpha-synuclein assembly. Neurobiol Dis 43(3):715–724PubMedGoogle Scholar
  74. 74.
    Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209(5):889–893. doi:10.1084/jem.20120741 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047PubMedGoogle Scholar
  76. 76.
    Proukakis C, Dudzik CG, Brier T, Mackay DS, Cooper JM, Millhauser GL, Houlden H, Schapira AH (2013) A novel alpha-synuclein missense mutation in Parkinson disease. Neurology 80(11):1062–1064PubMedPubMedCentralGoogle Scholar
  77. 77.
    Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S, Perez A, Fernagut PO, Blesa J, Parent A, Perier C, Farinas I, Obeso JA, Bezard E, Vila M (2013) Lewy body extracts from Parkinson’s disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. doi:10.1002/ana.24066 Google Scholar
  78. 78.
    Reynolds AD, Glanzer JG, Kadiu I, Ricardo-Dukelow M, Chaudhuri A, Ciborowski P, Cerny R, Gelman B, Thomas MP, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem 104(6):1504–1525PubMedGoogle Scholar
  79. 79.
    Rochet JC, Conway KA, Lansbury PT (2000) Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry 39(35):10619–10626PubMedGoogle Scholar
  80. 80.
    Roodveldt C, Christodoulou J, Dobson CM (2008) Immunological features of alpha-synuclein in Parkinson’s disease. J Cell Mol Med 12(5B):1820–1829PubMedGoogle Scholar
  81. 81.
    Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28(10):429–436PubMedGoogle Scholar
  82. 82.
    Sacino AN, Brooks M, McGarvey NH, McKinney AB, Thomas MA, Levites Y, Ran Y, Golde TE, Giasson BI (2013) Induction of CNS alpha-synuclein pathology by fibrillar and non-amyloidogenic recombinant alpha-synuclein. Acta Neuropathol Commun 1(1):38. doi:10.1186/2051-5960-1-38 PubMedPubMedCentralGoogle Scholar
  83. 83.
    Sacino AN, Thomas MA, Ceballos-Diaz C, Cruz PE, Rosario AM, Lewis J, Giasson BI, Golde TE (2013) Conformational templating of alpha-synuclein aggregates in neuronal-glial cultures. Mol Neurodegen 8:17. doi:10.1186/1750-1326-8-17 Google Scholar
  84. 84.
    Sengoku R, Saito Y, Ikemura M, Hatsuta H, Sakiyama Y, Kanemaru K, Arai T, Sawabe M, Tanaka N, Mochizuki H, Inoue K, Murayama S (2008) Incidence and extent of Lewy body-related alpha-synucleinopathy in aging human olfactory bulb. J Neuropathol Exp Neurol 67(11):1072–1083. doi:10.1097/NEN.0b013e31818b4126 PubMedGoogle Scholar
  85. 85.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841PubMedGoogle Scholar
  86. 86.
    Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701PubMedPubMedCentralGoogle Scholar
  87. 87.
    Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518PubMedPubMedCentralGoogle Scholar
  88. 88.
    Trimpin S, Mixon AE, Stapels MD, Kim MY, Spencer PS, Deinzer ML (2004) Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry. Biochemistry 43(7):2091–2105. doi:10.1021/bi030196q PubMedGoogle Scholar
  89. 89.
    Tu PH, Robinson KA, de Snoo F, Eyer J, Peterson A, Lee VM, Trojanowski JQ (1997) Selective degeneration for Purkinje cells with Lewy body-like inclusions in aged NFHLACZ transgenic mice. J Neurosci 17(3):1064–1074PubMedGoogle Scholar
  90. 90.
    Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71PubMedPubMedCentralGoogle Scholar
  91. 91.
    Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, Dearmond SJ, Prusiner SB (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci USA 110(48):19555–19560. doi:10.1073/pnas.1318268110 PubMedPubMedCentralGoogle Scholar
  92. 92.
    Waxman EA, Duda JE, Giasson BI (2008) Characterization of antibodies that selectively detect alpha-synuclein in pathological inclusions. Acta Neuropathol 116(1):37–46PubMedPubMedCentralGoogle Scholar
  93. 93.
    Waxman EA, Giasson BI (2008) Molecular mechanisms of alpha-synuclein neurodegeneration. Biochim Biophys Acta 1792:616–624PubMedPubMedCentralGoogle Scholar
  94. 94.
    Waxman EA, Giasson BI (2008) Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. J Neuropathol Exp Neurol 67(5):402–416PubMedPubMedCentralGoogle Scholar
  95. 95.
    Waxman EA, Giasson BI (2010) A novel, high-efficiency cellular model of fibrillar alpha-synuclein inclusions and the examination of mutations that inhibit amyloid formation. J Neurochem 113(2):374–388PubMedPubMedCentralGoogle Scholar
  96. 96.
    Waxman EA, Giasson BI (2011) Characterization of kinases involved in the phosphorylation of aggregated alpha-synuclein. J Neurosci Res 89(2):231–247PubMedGoogle Scholar
  97. 97.
    Waxman EA, Giasson BI (2011) Induction of intracellular tau aggregation is promoted by alpha-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J Neurosci 31(21):7604–7618PubMedPubMedCentralGoogle Scholar
  98. 98.
    Waxman EA, Mazzulli JR, Giasson BI (2009) Characterization of hydrophobic residue requirements for alpha-synuclein fibrillization. Biochemistry 48(40):9427–9436PubMedPubMedCentralGoogle Scholar
  99. 99.
    Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715PubMedGoogle Scholar
  100. 100.
    Xu ZS, Liu WS, Willard M (1990) Identification of serine 473 as a major phosphorylation site in the neurofilament polypeptide NF-L. J Neurosci 10(6):1838–1846PubMedGoogle Scholar
  101. 101.
    Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez TE, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173PubMedGoogle Scholar
  102. 102.
    Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542PubMedGoogle Scholar
  103. 103.
    Zhu Q, Couillard-Despres S, Julien JP (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148(1):299–316. doi:10.1006/exnr.1997.6654 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amanda N. Sacino
    • 1
  • Mieu Brooks
    • 1
  • Michael A. Thomas
    • 1
  • Alex B. McKinney
    • 1
  • Nicholas H. McGarvey
    • 1
  • Nicola J. Rutherford
    • 1
  • Carolina Ceballos-Diaz
    • 1
  • Janice Robertson
    • 2
  • Todd E. Golde
    • 1
  • Benoit I. Giasson
    • 1
  1. 1.Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease and McKnight Brain InstituteCollege of Medicine University of FloridaGainesvilleUSA
  2. 2.Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoCanada

Personalised recommendations