Advertisement

Acta Neuropathologica

, Volume 126, Issue 3, pp 453–459 | Cite as

Sporadic ALS with compound heterozygous mutations in the SQSTM1 gene

  • Hiroshi Shimizu
  • Yasuko Toyoshima
  • Atsushi Shiga
  • Akio Yokoseki
  • Keiko Arakawa
  • Yumi Sekine
  • Takayoshi Shimohata
  • Takeshi Ikeuchi
  • Masatoyo Nishizawa
  • Akiyoshi Kakita
  • Osamu Onodera
  • Hitoshi TakahashiEmail author
Case Report

Abstract

Accumulating evidence suggests that heterozygous mutations in the SQSTM1 gene, which encodes p62 protein, are associated with amyotrophic lateral sclerosis (ALS). Here, we report a Japanese patient with sporadic, late-onset ALS who harbored compound heterozygous SQSTM1 mutations (p.[Val90Met];[Val153Ile]). Autopsy examination revealed that although TDP-43 pathology was rather widespread, the selective occurrence of p62-positive/TDP-43-negative cytoplasmic inclusions in the lower motor neurons (LMNs) was a characteristic feature. No Bunina bodies were found. Ultrastructurally, p62-positive cytoplasmic inclusions observed in the spinal anterior horn cells were composed of aggregates of ribosome-like granules and intermingled bundles of filamentous structures. Another feature of interest was concomitant Lewy body pathology. The occurrence of distinct p62 pathology in the LMNs in this patient indicates the pathogenic role of SQSTM1 mutations in the development of a subset of ALS.

Keywords

Amyotrophic lateral sclerosis SQSTM1 gene Compound heterozygote Neuropathology p62 TDP-43 

Notes

Acknowledgments

We thank C. Tanda, J. Takasaki, H. Saito, T. Fujita, S. Nigorikawa, and S. Egawa for their technical assistance, and M. Machida and Y. Ueda for secretarial assistance. This work was supported by Grants-in-Aid 23590390 (to Y.T.), 22249036 (to M.N.), and 23240049 (to H.T.) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, and grants (to O.O. and H.T.) from the Research Committee for CNS Degenerative Diseases, the Ministry of Health, Labor and Welfare, Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Al-Sarraj S, King A, Troakes C et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122:691–702PubMedCrossRefGoogle Scholar
  2. 2.
    Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123:825–839PubMedCrossRefGoogle Scholar
  3. 3.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCrossRefGoogle Scholar
  4. 4.
    Deng HX, Hentati A, Tainer JA et al (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261:1047–1051PubMedCrossRefGoogle Scholar
  5. 5.
    Deng HX, Chen W, Hong ST et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215PubMedCrossRefGoogle Scholar
  6. 6.
    Fecto F, Yan J, Vemula SP et al (2011) SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68:1440–1446PubMedCrossRefGoogle Scholar
  7. 7.
    Hirano M, Nakamura Y, Saigoh K et al (2013) Mutations in the gene encoding p62 in Japanese patients with amyotrophic lateral sclerosis. Neurology 80:458–463PubMedCrossRefGoogle Scholar
  8. 8.
    Kuusisto E, Kauppinen T, Alafuzoff I (2008) Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathol Appl Neurobiol 34:169–180PubMedCrossRefGoogle Scholar
  9. 9.
    Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208PubMedCrossRefGoogle Scholar
  10. 10.
    Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113PubMedCrossRefGoogle Scholar
  11. 11.
    McKeith IG, Dickson DW, Lowe J et al (2005) Consortium on DLB. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872PubMedCrossRefGoogle Scholar
  12. 12.
    Mori F, Tanji K, Miki Y et al (2010) Relationship between Bunina bodies and TDP-43 inclusions in spinal anterior horn in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 36:345–352PubMedCrossRefGoogle Scholar
  13. 13.
    Murray ME, DeJesus-Hernandez M, Rutherford NJ et al (2011) Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122:673–690PubMedCrossRefGoogle Scholar
  14. 14.
    Nishihira Y, Tan CF, Onodera O et al (2008) Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol 116:169–182PubMedCrossRefGoogle Scholar
  15. 15.
    Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 20:257–268CrossRefGoogle Scholar
  16. 16.
    Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62PubMedCrossRefGoogle Scholar
  17. 17.
    Rubino E, Rainero I, Chiò A et al (2012) SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79:1556–1562PubMedCrossRefGoogle Scholar
  18. 18.
    Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRefGoogle Scholar
  19. 19.
    Tanji K, Zhang HX, Mori F et al (2012) p62/sequestosome 1 binds to TDP-43 in brains with frontotemporal lobar degeneration with TDP-43 inclusions. J Neurosci Res 90:2034–2042PubMedCrossRefGoogle Scholar
  20. 20.
    Teyssou E, Takeda T, Lebon V et al (2013) Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol. doi: 10.1007/s00401-013-1090-0 PubMedGoogle Scholar
  21. 21.
    Vance C, Rogelj B, Hortobágyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211PubMedCrossRefGoogle Scholar
  22. 22.
    Yokoseki A, Shiga A, Tan CF et al (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hiroshi Shimizu
    • 1
  • Yasuko Toyoshima
    • 1
  • Atsushi Shiga
    • 1
  • Akio Yokoseki
    • 2
  • Keiko Arakawa
    • 2
  • Yumi Sekine
    • 2
  • Takayoshi Shimohata
    • 2
  • Takeshi Ikeuchi
    • 2
  • Masatoyo Nishizawa
    • 2
  • Akiyoshi Kakita
    • 1
  • Osamu Onodera
    • 3
  • Hitoshi Takahashi
    • 1
    Email author
  1. 1.Department of Pathology, Brain Research InstituteUniversity of NiigataNiigataJapan
  2. 2.Department of Neurology, Brain Research InstituteUniversity of NiigataNiigataJapan
  3. 3.Department of Molecular Neuroscience, Brain Research InstituteUniversity of NiigataNiigataJapan

Personalised recommendations