Acta Neuropathologica

, Volume 126, Issue 3, pp 353–364 | Cite as

Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models

  • Michal Arbel-Ornath
  • Eloise Hudry
  • Katharina Eikermann-Haerter
  • Steven Hou
  • Julia L. Gregory
  • Lingzhi Zhao
  • Rebecca A. Betensky
  • Matthew P. Frosch
  • Steven M. Greenberg
  • Brian J. Bacskai
Original Paper


The interstitial fluid (ISF) drainage pathway has been hypothesized to underlie the clearance of solutes and metabolites from the brain. Previous work has implicated the perivascular spaces along arteries as the likely route for ISF clearance; however, it has never been demonstrated directly. The accumulation of amyloid β (Aβ) peptides in brain parenchyma is one of the pathological hallmarks of Alzheimer disease (AD), and it is likely related to an imbalance between production and clearance of the peptide. Aβ drainage along perivascular spaces has been postulated to be one of the mechanisms that mediate the peptide clearance from the brain. We therefore devised a novel method to visualize solute clearance in real time in the living mouse brain using laser guided bolus dye injections and multiphoton imaging. This methodology allows high spatial and temporal resolution and revealed the kinetics of ISF clearance. We found that the ISF drains along perivascular spaces of arteries and capillaries but not veins, and its clearance exhibits a bi-exponential profile. ISF drainage requires a functional vasculature, as solute clearance decreased when perfusion was impaired. In addition, reduced solute clearance was observed in transgenic mice with significant vascular amyloid deposition; we suggest the existence of a feed-forward mechanism, by which amyloid deposition promotes further amyloid deposition. This important finding provides a mechanistic link between cerebrovascular disease and Alzheimer disease and suggests that facilitation of Aβ clearance along the perivascular pathway should be considered as a new target for therapeutic approaches to Alzheimer disease and cerebral amyloid angiopathy.


Alzheimer’s disease Amyloid β Cerebral amyloid angiopathy Interstitial fluids Ischemic stroke Perivascular space 


  1. 1.
    Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552. doi:10.1016/j.neuint.2003.11.006 PubMedCrossRefGoogle Scholar
  2. 2.
    Attems J, Jellinger KA, Lintner F (2005) Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 110:222–231. doi:10.1007/s00401-005-1064-y PubMedCrossRefGoogle Scholar
  3. 3.
    Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 27:909–918. doi:10.1038/sj.jcbfm.9600419 Google Scholar
  4. 4.
    Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336PubMedGoogle Scholar
  5. 5.
    Burns EM, Kruckeberg TW, Gaetano PK (1981) Changes with age in cerebral capillary morphology. Neurobiol Aging 2:283–291PubMedCrossRefGoogle Scholar
  6. 6.
    Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144. doi:10.1111/j.1365-2990.2007.00926.x PubMedCrossRefGoogle Scholar
  7. 7.
    Casley-Smith JR, Foldi-Borsok E, Foldi M (1976) The prelymphatic pathways of the brain as revealed by cervical lymphatic obstruction and the passage of particles. Br J Exp Pathol 57:179–188PubMedGoogle Scholar
  8. 8.
    Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci Off J Soc Neurosci 23:8844–8853Google Scholar
  9. 9.
    Datta S, Satten E (2005) Rank-sum tests for clustered data. J Am Stat Assoc 100:908–915. doi:10.1198/016214504000001583 CrossRefGoogle Scholar
  10. 10.
    DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295:2264–2267. doi:10.1126/science.1067568 PubMedCrossRefGoogle Scholar
  11. 11.
    Dietrich WD, Prado R, Halley M, Watson BD (1993) Microvascular and neuronal consequences of common carotid artery thrombosis and platelet embolization in rats. J Neuropathol Exp Neurol 52:351–360PubMedCrossRefGoogle Scholar
  12. 12.
    Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiappelli F, Bernard G (2005) Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimer’s Dis JAD 7:221–232 discussion 255–262Google Scholar
  13. 13.
    Garcia-Alloza M, Gregory J, Kuchibhotla KV, Fine S, Wei Y, Ayata C, Frosch MP, Greenberg SM, Bacskai BJ (2011) Cerebrovascular lesions induce transient beta-amyloid deposition. Brain J Neurol 134:3697–3707. doi:10.1093/brain/awr300 CrossRefGoogle Scholar
  14. 14.
    Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24:516–524. doi:10.1016/j.nbd.2006.08.017 PubMedCrossRefGoogle Scholar
  15. 15.
    Greenberg SM, Gurol ME, Rosand J, Smith EE (2004) Amyloid angiopathy-related vascular cognitive impairment. Stroke J Cereb Circ 35:2616–2619. doi:10.1161/01.STR.0000143224.36527.44 CrossRefGoogle Scholar
  16. 16.
    Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443. doi:10.1007/s00401-011-0801-7 PubMedCrossRefGoogle Scholar
  17. 17.
    Helzner EP, Luchsinger JA, Scarmeas N, Cosentino S, Brickman AM, Glymour MM, Stern Y (2009) Contribution of vascular risk factors to the progression in Alzheimer disease. Arch Neurol 66:343–348. doi:10.1001/archneur.66.3.343 PubMedCrossRefGoogle Scholar
  18. 18.
    Hrabetova S, Nicholson C (2007) Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience, CityGoogle Scholar
  19. 19.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Trans Med 4:147ra111. doi:10.1126/scitranslmed.3003748 CrossRefGoogle Scholar
  20. 20.
    Iwata N, Higuchi M, Saido TC (2005) Metabolism of amyloid-beta peptide and Alzheimer’s disease. Pharmacol Ther 108:129–148. doi:10.1016/j.pharmthera.2005.03.010 PubMedCrossRefGoogle Scholar
  21. 21.
    Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17:157–165PubMedCrossRefGoogle Scholar
  22. 22.
    Kalaria RN (1996) Cerebral vessels in ageing and Alzheimer’s disease. Pharmacol Ther 72:193–214PubMedCrossRefGoogle Scholar
  23. 23.
    Kalaria RN (2000) The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging 21:321–330PubMedCrossRefGoogle Scholar
  24. 24.
    Kleinfeld D, Mitra PP, Helmchen F, Denk W (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci USA 95:15741–15746PubMedCrossRefGoogle Scholar
  25. 25.
    Klunk WE, Bacskai BJ, Mathis CA, Kajdasz ST, McLellan ME, Frosch MP, Debnath ML, Holt DP, Wang Y, Hyman BT (2002) Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropathol Exp Neurol 61:797–805PubMedGoogle Scholar
  26. 26.
    Launer LJ, Petrovitch H, Ross GW, Markesbery W, White LR (2008) AD brain pathology: vascular origins? Results from the HAAS autopsy study. Neurobiol Aging 29:1587–1590. doi:10.1016/j.neurobiolaging.2007.03.008 PubMedCrossRefGoogle Scholar
  27. 27.
    Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL (1994) High-flow microinfusion: tissue penetration and pharmacodynamics. Am J physiol 266:R292–R305PubMedGoogle Scholar
  28. 28.
    Neuropathology Group. Medical Research Council Cognitive F, Aging S (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology group of the medical research council cognitive function and ageing study (MRC CFAS). Lancet 357:169–175CrossRefGoogle Scholar
  29. 29.
    Nicholson C (1985) Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res 333:325–329PubMedCrossRefGoogle Scholar
  30. 30.
    Okamoto Y, Yamamoto T, Kalaria RN, Senzaki H, Maki T, Hase Y, Kitamura A, Washida K, Yamada M, Ito H, Tomimoto H, Takahashi R, Ihara M (2012) Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol 123:381–394. doi:10.1007/s00401-011-0925-9 PubMedCrossRefGoogle Scholar
  31. 31.
    Paulson OB, Waldemar G, Schmidt JF, Strandgaard S (1989) Cerebral circulation under normal and pathologic conditions. Am J Cardiol 63:2C–5CPubMedCrossRefGoogle Scholar
  32. 32.
    Robbins EM, Betensky RA, Domnitz SB, Purcell SM, Garcia-Alloza M, Greenberg C, Rebeck GW, Hyman BT, Greenberg SM, Frosch MP, Bacskai BJ (2006) Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease. J Neurosci Off J Soc Neurosci 26:365–371. doi:10.1523/JNEUROSCI.3854-05.2006 CrossRefGoogle Scholar
  33. 33.
    Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Investig 106:1489–1499. doi:10.1172/JCI10498 PubMedCrossRefGoogle Scholar
  34. 34.
    Shih AY, Blinder P, Tsai PS, Friedman B, Stanley G, Lyden PD, Kleinfeld D (2013) The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci 16:55–63. doi:10.1038/nn.3278 PubMedCrossRefGoogle Scholar
  35. 35.
    Shin HK, Jones PB, Garcia-Alloza M, Borrelli L, Greenberg SM, Bacskai BJ, Frosch MP, Hyman BT, Moskowitz MA, Ayata C (2007) Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain J Neurol 130:2310–2319. doi:10.1093/brain/awm156 CrossRefGoogle Scholar
  36. 36.
    Skoch J, Hickey GA, Kajdasz ST, Hyman BT, Bacskai BJ (2005) In vivo imaging of amyloid-beta deposits in mouse brain with multiphoton microscopy. Methods Mol Biol 299:349–363PubMedGoogle Scholar
  37. 37.
    Smith EE, Vijayappa M, Lima F, Delgado P, Wendell L, Rosand J, Greenberg SM (2008) Impaired visual evoked flow velocity response in cerebral amyloid angiopathy. Neurology 71:1424–1430. doi:10.1212/01.wnl.0000327887.64299.a4 PubMedCrossRefGoogle Scholar
  38. 38.
    Soontornniyomkij V, Lynch MD, Mermash S, Pomakian J, Badkoobehi H, Clare R, Vinters HV (2010) Cerebral microinfarcts associated with severe cerebral beta-amyloid angiopathy. Brain Pathol 20:459–467. doi:10.1111/j.1750-3639.2009.00322.x PubMedCrossRefGoogle Scholar
  39. 39.
    Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844PubMedGoogle Scholar
  40. 40.
    Utter S, Tamboli IY, Walter J, Upadhaya AR, Birkenmeier G, Pietrzik CU, Ghebremedhin E, Thal DR (2008) Cerebral small vessel disease-induced apolipoprotein E leakage is associated with Alzheimer disease and the accumulation of amyloid beta-protein in perivascular astrocytes. J Neuropathol Exp Neurol 67:842–856. doi:10.1097/NEN.0b013e3181836a71 PubMedCrossRefGoogle Scholar
  41. 41.
    Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke J Cereb Circ 18:311–324CrossRefGoogle Scholar
  42. 42.
    Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy in the elderly. Ann Neurol 70:871–880. doi:10.1002/ana.22516 PubMedCrossRefGoogle Scholar
  43. 43.
    Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504. doi:10.1002/ana.410170513 PubMedCrossRefGoogle Scholar
  44. 44.
    Weed LH (1914) Studies on Cerebro-Spinal Fluid. No. III : the pathways of escape from the Subarachnoid Spaces with particular reference to the Arachnoid Villi. J Med Res 31:51–91PubMedGoogle Scholar
  45. 45.
    Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733PubMedCrossRefGoogle Scholar
  46. 46.
    Wilson RS, Scherr PA, Schneider JA, Tang Y, Bennett DA (2007) Relation of cognitive activity to risk of developing Alzheimer disease. Neurology 69:1911–1920. doi:10.1212/01.wnl.0000271087.67782.cb PubMedCrossRefGoogle Scholar
  47. 47.
    Wisniewski HM, Kozlowski PB (1982) Evidence for blood-brain barrier changes in senile dementia of the Alzheimer type (SDAT). Ann N Y Acad Sci 396:119–129PubMedCrossRefGoogle Scholar
  48. 48.
    Woollam DH, Millen JW (1955) The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat 89:193–200PubMedGoogle Scholar
  49. 49.
    Yamaguchi H, Yamazaki T, Lemere CA, Frosch MP, Selkoe DJ (1992) Beta amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer’s disease. An immunoelectron microscopic study. Am J Pathol 141:249–259PubMedGoogle Scholar
  50. 50.
    Zhang ET, Richards HK, Kida S, Weller RO (1992) Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 83:233–239PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang S, Murphy TH (2007) Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5:e119. doi:10.1371/journal.pbio.0050119 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michal Arbel-Ornath
    • 1
  • Eloise Hudry
    • 1
  • Katharina Eikermann-Haerter
    • 2
  • Steven Hou
    • 1
  • Julia L. Gregory
    • 1
  • Lingzhi Zhao
    • 1
  • Rebecca A. Betensky
    • 3
  • Matthew P. Frosch
    • 1
    • 4
  • Steven M. Greenberg
    • 1
  • Brian J. Bacskai
    • 1
  1. 1.Alzheimer Research Unit, Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA
  2. 2.Stroke and Neurovascular Regulation Laboratory, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA
  3. 3.Department of BiostatisticsHarvard School of Public HealthBostonUSA
  4. 4.C.S. Kubik Laboratory for Neuropathology, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA

Personalised recommendations