Advertisement

Acta Neuropathologica

, Volume 126, Issue 3, pp 411–425 | Cite as

Reduced cholinergic olfactory centrifugal inputs in patients with neurodegenerative disorders and MPTP-treated monkeys

  • Iñaki-Carril Mundiñano
  • Maria Hernandez
  • Carla DiCaudo
  • Cristina Ordoñez
  • Irene Marcilla
  • Maria-Teresa Tuñon
  • Maria-Rosario LuquinEmail author
Original Paper

Abstract

Olfactory impairment is a common feature of neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB). Olfactory bulb (OB) pathology in these diseases shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. Since cholinergic denervation might be a common underlying pathophysiological feature, the objective of this study was to determine cholinergic innervation of the OB in 27 patients with histological diagnosis of PD (n = 5), AD (n = 14), DLB (n = 8) and 8 healthy control subjects. Cholinergic centrifugal inputs to the OB were clearly reduced in all patients, the most significant decrease being in the DLB group. We also studied cholinergic innervation of the OB in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (n = 7) and 7 intact animals. In MPTP-monkeys, we found that cholinergic innervation of the OB was reduced compared to control animals (n = 7). Interestingly, in MPTP-monkeys, we also detected a loss of cholinergic neurons and decreased dopaminergic innervation in the horizontal limb of the diagonal band, which is the origin of the centrifugal cholinergic input to the OB. All these data suggest that cholinergic damage in the OB might contribute, at least in part, to the olfactory dysfunction usually exhibited by these patients. Moreover, decreased cholinergic input to the OB found in MPTP-monkeys suggests that dopamine depletion in itself might reduce the cholinergic tone of basal forebrain cholinergic neurons.

Keywords

Olfactory bulb Parkinson’s disease Alzheimer’s disease Dementia with Lewy bodies Cholinergic system MPTP Monkey 

Abbreviations

AD

Alzheimer’s disease

AON

Anterior olfactory nucleus

CHAT

Choline acetyl transferase

CHAT-ir

Choline acetyl transferase immunoreactivity/immunoreactive

DLB

Dementia with Lewy bodies

EPL

External plexiform layer

GCL

Granule cell layer

GL

Glomerular layer

HLDB

Horizontal limb of the diagonal band of Broca

IPL

Internal plexiform layer

MPTP

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NBM

Nucleus basalis of Meynert

OB

Olfactory bulb

PBS

Phosphate buffer saline

PD

Parkinson’s disease

PFA

Paraformaldehyde

SEM

Standard error of the mean

SN

Substantia nigra

TH

Tyrosine hydroxylase

TH-ir

Tyrosine hydroxylase immunoreactivity/immunoreactive

Tris HCl

2-Amino-2-hydroxymethyl-propane-1,3-diol hydrochloride

VTA

Ventral tegmental area

Notes

Acknowledgments

This study was supported by the UTE-project/Foundation for Applied Medical Research (FIMA). The authors thank Monica Kurtis for English edition of the manuscript.

References

  1. 1.
    Alafuzoff I, Thal DR, Arzberger T, Bogdanovic N, Al-Sarraj S, Bodi I et al (2009) Assessment of beta-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol 117:309–320. doi: 10.1007/s00401-009-0485-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Alafuzoff I, Arzberger T, Al-Sarraj S, Bodi I, Bogdanovic N, Braak H et al (2008) Staging of neurofibrillary pathology in Alzheimer’s disease: a study of the BrainNet Europe Consortium. Brain Pathol 18:484–496. doi: 10.1111/j.1750-3639.2008.00147.x PubMedGoogle Scholar
  3. 3.
    Alafuzoff I, Parkkinen L, Al-Sarraj S, Arzberger T, Bell J, Bodi I et al (2008) Assessment of alpha-synuclein pathology: a study of the BrainNet Europe Consortium. J Neuropathol Exp Neurol 67:125–143. doi: 10.1097/nen.0b013e3181633526 PubMedCrossRefGoogle Scholar
  4. 4.
    American-Psychiatric-Association (1987) Diagnostic and statistical manual of mental disorders. Third, revised edn. Washington DCGoogle Scholar
  5. 5.
    Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s Disease. Acta Neuropathol 61:101–108PubMedCrossRefGoogle Scholar
  6. 6.
    Attems J, Jellinger KA (2006) Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol 25:265–271PubMedGoogle Scholar
  7. 7.
    Baba T, Kikuchi A, Hirayama K, Nishio Y, Hosokai Y, Kanno S et al (2012) Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: a 3 year longitudinal study. Brain 135:161–169. doi: 10.1093/brain/awr321 PubMedCrossRefGoogle Scholar
  8. 8.
    Belzunegui S, Sebastián WS, Garrido-Gil P, Izal-azcárate A, Vázquez-Claverie M, López B et al (2007) The number of dopaminergic cells is increased in the olfactory bulb of monkeys chronically exposed to MPTP. Synapse 61:1006–1012. doi: 10.1002/syn.20451 PubMedCrossRefGoogle Scholar
  9. 9.
    Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202. doi: 10.1016/j.tins.2007.03.006 PubMedCrossRefGoogle Scholar
  10. 10.
    Bohnen NI, Muller ML (2012) In vivo neurochemical imaging of olfactory dysfunction in Parkinson’s disease. J Neural Transm. doi: 10.1007/s00702-012-0956-y PubMedGoogle Scholar
  11. 11.
    Bohnen NI, Albin RL (2009) Cholinergic denervation occurs early in Parkinson disease. Neurology 73:256–257. doi: 10.1212/WNL.0b013e3181b0bd3d PubMedCrossRefGoogle Scholar
  12. 12.
    Bohnen NI, Muller MLTM, Kotagal V, Koeppe RA, Kilbourn MA, Albin RL et al (2010) Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease. Brain 133:1747–1754. doi: 10.1093/brain/awq079 PubMedCrossRefGoogle Scholar
  13. 13.
    Bohnen NI, Gedela S, Herath P, Constantine GM, Moore RY (2008) Selective hyposmia in Parkinson disease: association with hippocampal dopamine activity. Neurosci Lett 447:12–16PubMedCrossRefGoogle Scholar
  14. 14.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. doi: 10.1007/s00401-006-0127-z PubMedCrossRefGoogle Scholar
  15. 15.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  16. 16.
    Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  17. 17.
    Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF et al (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289PubMedCrossRefGoogle Scholar
  18. 18.
    Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL (2013) The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res Rev. doi: 10.1016/j.arr.2013.03.002 PubMedGoogle Scholar
  19. 19.
    Devore S, Linster C (2012) Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front Behav Neurosci 6:52. doi: 10.3389/fnbeh.2012.00052 PubMedGoogle Scholar
  20. 20.
    Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 8:329–339. doi: 10.1038/nrneurol.2012.80 PubMedCrossRefGoogle Scholar
  21. 21.
    Doty RL, Deems DA, Stellar S (1988) Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38:1237–1244PubMedCrossRefGoogle Scholar
  22. 22.
    Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46:527–552. doi: 10.1016/j.nbd.2011.10.026 PubMedCrossRefGoogle Scholar
  23. 23.
    Echavarri C, Caballero MC, Aramendia A, Garcia-Bragado F, Tunon T (2011) Multiprotein deposits in neurodegenerative disorders: our experience in the tissue brain bank of Navarra. Anat Rec (Hoboken) 294:1191–1197. doi: 10.1002/ar.21413 CrossRefGoogle Scholar
  24. 24.
    Fletcher ML, Chen WR (2010) Neural correlates of olfactory learning: critical role of centrifugal neuromodulation. Learn Mem 17:561–570. doi: 10.1101/lm.941510 PubMedCrossRefGoogle Scholar
  25. 25.
    Garvey J, Petersen M, Waters CM, Rose SP, Hunt S, Briggs R et al (1986) Administration of MPTP to the common marmoset does not alter cortical cholinergic function. Mov Disord 1:129–134. doi: 10.1002/mds.870010207 PubMedCrossRefGoogle Scholar
  26. 26.
    Gaykema RP, Zaborszky L (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. II. Substantia nigra–ventral tegmental area projections to cholinergic neurons. J Comp Neurol 374:555–577PubMedCrossRefGoogle Scholar
  27. 27.
    German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK et al (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676. doi: 10.1002/ana.410320510 PubMedCrossRefGoogle Scholar
  28. 28.
    Gomez-Gallego M, Fernandez-Villalba E, Fernandez-Barreiro A, Herrero MT (2007) Changes in the neuronal activity in the pedunculopontine nucleus in chronic MPTP-treated primates: an in situ hybridization study of cytochrome oxidase subunit I, choline acetyl transferase and substance P mRNA expression. J Neural Transm 114:319–326. doi: 10.1007/s00702-006-0547-x PubMedCrossRefGoogle Scholar
  29. 29.
    Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K et al (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96:379–394PubMedCrossRefGoogle Scholar
  30. 30.
    Hawkes CH, Shephard BC, Daniel SE (1997) Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:436–446. doi: 10.1136/jnnp.62.5.436 PubMedCrossRefGoogle Scholar
  31. 31.
    Heise CE, Teo ZC, Wallace BA, Ashkan K, Benabid AL, Mitrofanis J (2005) Cell survival patterns in the pedunculopontine tegmental nucleus of methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys and 6OHDA-lesioned rats: evidence for differences to idiopathic Parkinson disease patients? Anat Embryol (Berl) 210:287–302. doi: 10.1007/s00429-005-0053-1 CrossRefGoogle Scholar
  32. 32.
    Herrero MT, Hirsch EC, Javoy-Agid F, Obeso JA, Agid Y (1993) Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum. Brain Res 624:281–285PubMedCrossRefGoogle Scholar
  33. 33.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedCrossRefGoogle Scholar
  34. 34.
    Huisman E, Uylings HB, Hoogland PV (2008) Gender-related changes in increase of dopaminergic neurons in the olfactory bulb of Parkinson’s disease patients. Mov Disord 23:1407–1413PubMedCrossRefGoogle Scholar
  35. 35.
    Huisman E, Uylings HB, Hoogland PV (2004) A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19:687–692. doi: 10.1002/mds.10713 PubMedCrossRefGoogle Scholar
  36. 36.
    Huot P, Fox SH, Brotchie JM (2011) The serotonergic system in Parkinson’s disease. Prog Neurobiol 95:163–212. doi: 10.1016/j.pneurobio.2011.08.004 PubMedCrossRefGoogle Scholar
  37. 37.
    Jellinger KA (2009) Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol 117:215–216; author reply 217–218. doi: 10.1007/s00401-008-0454-3 Google Scholar
  38. 38.
    Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29:427–441PubMedGoogle Scholar
  39. 39.
    Karachi C, Grabli D, Bernard FA, Tande D, Wattiez N, Belaid H et al (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120:2745–2754. doi: 10.1172/JCI42642 PubMedCrossRefGoogle Scholar
  40. 40.
    Kasa P, Rakonczay Z, Gulya K (1997) The cholinergic system in Alzheimer’s disease. Prog Neurobiol 52:511–535PubMedCrossRefGoogle Scholar
  41. 41.
    Kehagia AA, Barker RA, Robbins TW (2010) Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 9:1200–1213. doi: 10.1016/S1474-4422(10)70212-X PubMedCrossRefGoogle Scholar
  42. 42.
    Korczyn AD (2001) Dementia in Parkinson’s disease. J Neurol 248(Suppl 3):III-1–III-4. doi: 10.1007/PL00022916 Google Scholar
  43. 43.
    Kovács CL (1999) β-Amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491PubMedCrossRefGoogle Scholar
  44. 44.
    Kovacs I, Torok I, Zombori J, Kasa P (1998) Cholinergic structures and neuropathologic alterations in the olfactory bulb of Alzheimer’s disease brain samples. Brain Res 789:167–170PubMedCrossRefGoogle Scholar
  45. 45.
    Kovacs I, Torok I, Zombori J, Kasa P (1996) Neuropathologic changes in the olfactory bulb in Alzheimer’s disease. Neurobiology (Bp) 4:123–126Google Scholar
  46. 46.
    Lehericy S, Hirsch EC, Cervera-Pierot P, Hersh LB, Bakchine S, Piette F et al (1993) Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J Comp Neurol 330:15–31. doi: 10.1002/cne.903300103 PubMedCrossRefGoogle Scholar
  47. 47.
    Levey AI, Wainer BH, Mufson EJ, Mesulam MM (1983) Co-localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum. Neuroscience 9:9–22PubMedCrossRefGoogle Scholar
  48. 48.
    Luquin MR, Montoro RJ, Guillen J, Saldise L, Insausti R, Del Rio J et al (1999) Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron 22:743–750PubMedCrossRefGoogle Scholar
  49. 49.
    McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872. doi: 10.1212/01.wnl.0000187889.17253.b1 PubMedCrossRefGoogle Scholar
  50. 50.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944PubMedCrossRefGoogle Scholar
  51. 51.
    McShane RH, Nagy Z, Esiri MM, King E, Joachim C, Sullivan N et al (2001) Anosmia in dementia is associated with Lewy bodies rather than Alzheimer’s pathology. J Neurol Neurosurg Psychiatry 70:739–743PubMedCrossRefGoogle Scholar
  52. 52.
    Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch Neurol 55:84–90. doi: 10.1001/archneur.55.1.84 PubMedCrossRefGoogle Scholar
  53. 53.
    Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240. doi: 10.1002/cne.902750205 PubMedCrossRefGoogle Scholar
  54. 54.
    Mesulam M-, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197. doi: 10.1002/cne.902140206 PubMedCrossRefGoogle Scholar
  55. 55.
    Mesulam M, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686. doi: 10.1016/0306-4522(84)90163-5 PubMedCrossRefGoogle Scholar
  56. 56.
    Momiyama T, Sim JA (1996) Modulation of inhibitory transmission by dopamine in rat basal forebrain nuclei: activation of presynaptic D1-like dopaminergic receptors. J Neurosci 16:7505–7512PubMedGoogle Scholar
  57. 57.
    Momiyama T, Sim JA, Brown DA (1996) Dopamine D1-like receptor-mediated presynaptic inhibition of excitatory transmission onto rat magnocellular basal forebrain neurones. J Physiol 495(Pt 1):97–106PubMedGoogle Scholar
  58. 58.
    Morley JF, Weintraub D, Mamikonyan E, Moberg PJ, Siderowf AD, Duda JE (2011) Olfactory dysfunction is associated with neuropsychiatric manifestations in Parkinson’s disease. Mov Disord 26:2051–2057. doi: 10.1002/mds.23792 PubMedCrossRefGoogle Scholar
  59. 59.
    Mossner R, Schmitt A, Syagailo Y, Gerlach M, Riederer P, Lesch KP (2000) The serotonin transporter in Alzheimer’s and Parkinson’s disease. J Neural Transm Suppl 345–350Google Scholar
  60. 60.
    Mundinano IC, Caballero MC, Ordonez C, Hernandez M, DiCaudo C, Marcilla I et al (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122:61–74. doi: 10.1007/s00401-011-0830-2 PubMedCrossRefGoogle Scholar
  61. 61.
    Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ et al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381. doi: 10.1097/NEN.0b013e31825018f7 PubMedCrossRefGoogle Scholar
  62. 62.
    Olichney JM, Murphy C, Hofstetter CR, Foster K, Hansen LA, Thal LJ et al (2005) Anosmia is very common in the Lewy body variant of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:1342–1347. doi: 10.1136/jnnp.2003.032003 PubMedCrossRefGoogle Scholar
  63. 63.
    Parodi J, Sepulveda FJ, Roa J, Opazo C, Inestrosa NC, Aguayo LG (2010) Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem 285:2506–2514. doi: 10.1074/jbc.M109.030023 PubMedCrossRefGoogle Scholar
  64. 64.
    Pearce RK, Hawkes CH, Daniel SE (1995) The anterior olfactory nucleus in Parkinson’s disease. Mov Disord 10:283–287. doi: 10.1002/mds.870100309 PubMedCrossRefGoogle Scholar
  65. 65.
    Petzold GC, Hagiwara A, Murthy VN (2009) Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat Neurosci 12:784–791. doi: 10.1038/nn.2335 PubMedCrossRefGoogle Scholar
  66. 66.
    Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A et al (2010) Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 277:3051–3067. doi: 10.1111/j.1742-4658.2010.07719.x PubMedCrossRefGoogle Scholar
  67. 67.
    Porteros A, Gomez C, Valero J, Calvo-Baltanas F, Alonso JR (2007) Chemical organization of the macaque monkey olfactory bulb: III. Distribution of cholinergic markers. J Comp Neurol 501:854–865. doi: 10.1002/cne.21280 PubMedCrossRefGoogle Scholar
  68. 68.
    Postuma R, Gagnon JF (2010) Cognition and olfaction in Parkinson’s disease. Brain 133:e160; author reply e161. doi: 10.1093/brain/awq225
  69. 69.
    Potter PE, Rauschkolb PK, Pandya Y, Sue LI, Sabbagh MN, Walker DG et al (2011) Pre- and post-synaptic cortical cholinergic deficits are proportional to amyloid plaque presence and density at preclinical stages of Alzheimer’s disease. Acta Neuropathol 122:49–60. doi: 10.1007/s00401-011-0831-1 PubMedCrossRefGoogle Scholar
  70. 70.
    Rogers JD, Brogan D, Mirra SS (1985) The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann Neurol 17:163–170. doi: 10.1002/ana.410170210 PubMedCrossRefGoogle Scholar
  71. 71.
    Ruberg M, Rieger F, Villageois A, Bonnet AM, Agid Y (1986) Acetylcholinesterase and butyrylcholinesterase in frontal cortex and cerebrospinal fluid of demented and non-demented patients with Parkinson’s disease. Brain Res 362:83–91PubMedCrossRefGoogle Scholar
  72. 72.
    Shimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N et al (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73:273–278. doi: 10.1212/WNL.0b013e3181ab2b58 PubMedCrossRefGoogle Scholar
  73. 73.
    Simpson J, Yates CM, Gordon A, St Clair DM (1984) Olfactory tubercle choline acetyltransferase activity in Alzheimer-type dementia, Down’s syndrome and Huntington’s chorea. J Neurol Neurosurg Psychiatry 47:1138–1139PubMedCrossRefGoogle Scholar
  74. 74.
    Smiley JF, Subramanian M, Mesulam MM (1999) Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience 93:817–829PubMedCrossRefGoogle Scholar
  75. 75.
    Stephenson R, Houghton D, Sundarararjan S, Doty RL, Stern M, Xie SX et al (2010) Odor identification deficits are associated with increased risk of neuropsychiatric complications in patients with Parkinson’s disease. Mov Disord 25:2099–2104. doi: 10.1002/mds.23234 PubMedCrossRefGoogle Scholar
  76. 76.
    Szego EM, Gerhardt E, Outeiro TF, Kermer P (2011) Dopamine-depletion and increased alpha-synuclein load induce degeneration of cortical cholinergic fibers in mice. J Neurol Sci 310:90–95. doi: 10.1016/j.jns.2011.06.048 PubMedCrossRefGoogle Scholar
  77. 77.
    Szegő ÉM, Outeiro TF, Kermer P, Schulz JB (2013) Impairment of the septal cholinergic neurons in MPTP-treated A30P α-synuclein mice. Neurobiol Aging 34:589–601. doi: 10.1016/j.neurobiolaging.2012.04.012 PubMedCrossRefGoogle Scholar
  78. 78.
    Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA (2006) Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J Neurosci 26:467–478. doi: 10.1523/JNEUROSCI.4265-05.2006 PubMedCrossRefGoogle Scholar
  79. 79.
    Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin–proteasome system. Am J Pathol 181:1426–1435. doi: 10.1016/j.ajpath.2012.06.033 PubMedCrossRefGoogle Scholar
  80. 80.
    Thomann PA, Dos Santos V, Toro P, Schönknecht P, Essig M, Schröder J (2009) Reduced olfactory bulb and tract volume in early Alzheimer’s disease—a MRI study. Neurobiol Aging 30:838–841PubMedCrossRefGoogle Scholar
  81. 81.
    Ubeda-Banon I, Saiz-Sanchez D, de la Rosa-Prieto C, Argandona-Palacios L, Garcia-Munozguren S, Martinez-Marcos A (2010) Alpha-synucleinopathy in the human olfactory system in Parkinson’s disease: involvement of calcium-binding protein- and substance P-positive cells. Acta Neuropathol 119:723–735. doi: 10.1007/s00401-010-0687-9 PubMedCrossRefGoogle Scholar
  82. 82.
    Wattendorf E, Welge-Lussen A, Fiedler K, Bilecen D, Wolfensberger M, Fuhr P et al (2009) Olfactory impairment predicts brain atrophy in Parkinson’s disease. J Neurosci 29:15410–15413. doi: 10.1523/JNEUROSCI.1909-09.2009 PubMedCrossRefGoogle Scholar
  83. 83.
    Westermann B, Wattendorf E, Schwerdtfeger U, Husner A, Fuhr P, Gratzl O et al (2008) Functional imaging of the cerebral olfactory system in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 79:19–24. doi: 10.1136/jnnp.2006.113860 PubMedCrossRefGoogle Scholar
  84. 84.
    Williams SS, Williams J, Combrinck M, Christie S, Smith AD, McShane R (2009) Olfactory impairment is more marked in patients with mild dementia with Lewy bodies than those with mild Alzheimer disease. J Neurol Neurosurg Psychiatry 80:667–670. doi: 10.1136/jnnp.2008.155895 PubMedCrossRefGoogle Scholar
  85. 85.
    Wilson RS, Yu L, Schneider JA, Arnold SE, Buchman AS, Bennett DA (2011) Lewy bodies and olfactory dysfunction in old age. Chem Senses 36:367–373. doi: 10.1093/chemse/bjq139 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Iñaki-Carril Mundiñano
    • 1
    • 2
  • Maria Hernandez
    • 1
    • 2
  • Carla DiCaudo
    • 1
    • 2
  • Cristina Ordoñez
    • 1
    • 2
  • Irene Marcilla
    • 1
    • 2
  • Maria-Teresa Tuñon
    • 3
  • Maria-Rosario Luquin
    • 1
    • 2
    Email author
  1. 1.Laboratory of Regenerative Therapy, Neuroscience DivisionCIMAPamplonaSpain
  2. 2.Department of NeurologyClínica Universidad de NavarraPamplonaSpain
  3. 3.Complejo Hopitalario de Navarra, Banco de Tejidos Neurológicos de NavarraPamplonaSpain

Personalised recommendations