Acta Neuropathologica

, Volume 125, Issue 3, pp 317–332 | Cite as

Evolving neurobiology of tuberous sclerosis complex

  • Peter B. CrinoEmail author


Over the past decade, there have been numerous advances in our understanding of the molecular pathogenesis of tuberous sclerosis complex (TSC). Following the identification of the TSC1 and TSC2 genes, a link to regulatory control of the mammalian target of rapamycin (mTOR) signaling pathway has paved the way for new therapeutic interventions, and now even approved therapies for TSC. Gene identification has permitted establishment of cell lines and conditional knockout mouse strains to assay how abnormalities in brain structure lead to enhanced excitability, seizures, cognitive disabilities, and other neuropsychological disorders in TSC. Furthermore, work in in vitro systems and analysis of rodent models and human tissue has allowed investigators to study how brain lesions form in TSC. Evolving questions over the next decade include understanding the high clinical variability of TSC, defining why there is a lack of clear genotype–phenotype correlations, and identifying biomarkers for prognosis and stratification. The study of TSC has in many ways reflected a paradigm “bench-to-bedside” success story that serves as a model of many other neurological disorders.


Tuberous sclerosis mTOR Epilepsy Autism Tuber SEGA 



This work was supported by NS045021, Department of Defense CDMRP-TSC Program grants, and the TS Alliance.


  1. 1.
    Anderl S, Freeland M, Kwiatkowski DJ, Goto J (2011) Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum Mol Genet 20:4597–4604PubMedCrossRefGoogle Scholar
  2. 2.
    Au KS, Williams AT, Roach ES et al (2007) Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med. 9:88–100PubMedCrossRefGoogle Scholar
  3. 3.
    Baybis M, Yu J, Lee A, Golden JA, Weiner H, McKhann G II, Aronica E, Crino PB (2004) Activation of the mTOR cascade distinguishes cortical tubers from focal cortical dysplasia. Ann Neurol 56:478–487PubMedCrossRefGoogle Scholar
  4. 4.
    Bissler JJ, McCormack FX, Young LR et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151PubMedCrossRefGoogle Scholar
  5. 5.
    Boer K, Troost D, Timmermans W, Gorter JA, Spliet WG, Nellist M, Jansen F, Aronica E (2008) Cellular localization of metabotropic glutamate receptors in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Neuroscience 156:203–215PubMedCrossRefGoogle Scholar
  6. 6.
    Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WG, van Rijen PC, Wittink FR, Breit TM, Troost D, Wadman WJ, Aronica E (2010) Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 20:704–719PubMedCrossRefGoogle Scholar
  7. 7.
    Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ, Spliet WG, Crino P, Aronica E (2008) Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology 28:577–590PubMedGoogle Scholar
  8. 8.
    Carson RP, Van Nielen DL, Winzenburger PA, Ess KC (2012) Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol Dis 45:369–380PubMedCrossRefGoogle Scholar
  9. 9.
    Cepeda C, André VM, Yamazaki I, Hauptman JS, Chen JY, Vinters HV et al (2010) Comparative study of cellular and synaptic abnormalities in brain tissue samples from pediatric tuberous sclerosis complex and cortical dysplasia type II. Epilepsia 51(Suppl 3):160–165PubMedCrossRefGoogle Scholar
  10. 10.
    Chan JA, Zhang H, Roberts PS et al (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242PubMedGoogle Scholar
  11. 11.
    Choi YJ, Di Nardo A, Kramvis I et al (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22:2485–2495PubMedCrossRefGoogle Scholar
  12. 12.
    Crino PB, Trojanowski JQ, Dichter MA, Eberwine J (1996) Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc Natl Acad Sci USA. 93(24):14152–14157PubMedCrossRefGoogle Scholar
  13. 13.
    Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356PubMedCrossRefGoogle Scholar
  14. 14.
    Crino PB, Aronica E, Baltuch G, Nathanson KL (2010) Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 74:1716–1723PubMedCrossRefGoogle Scholar
  15. 15.
    Dabora SL, Jozwiak S, Franz DN et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80PubMedCrossRefGoogle Scholar
  16. 16.
    Dabora SL, Franz DN, Ashwal S et al (2011) Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF-D levels decrease. PLoS ONE 6:e23379PubMedCrossRefGoogle Scholar
  17. 17.
    Davies DM, Johnson SR, Tattersfield AE et al (2008) Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med 358:200–203PubMedCrossRefGoogle Scholar
  18. 18.
    Davies DM, de Vries PJ, Johnson SR et al (2011) Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res 17:4071–4081PubMedCrossRefGoogle Scholar
  19. 19.
    Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD (2012) TBC1D7 Is a third subunit of the TSC1–TSC2 complex upstream of mTORC1. Mol Cell 47:535–546PubMedCrossRefGoogle Scholar
  20. 20.
    Ehninger D, Han S, Shilyansky C et al (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848PubMedCrossRefGoogle Scholar
  21. 21.
    Ehninger D, Silva AJ (2010) Rapamycin for treating tuberous sclerosis and autism spectrum disorders. Trends Mol Med. 17:78–87PubMedCrossRefGoogle Scholar
  22. 22.
    Ellisen LW (2005) Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle 4:1500–1502PubMedCrossRefGoogle Scholar
  23. 23.
    European Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315CrossRefGoogle Scholar
  24. 24.
    Feliciano DM, Su T, Lopez J, Platel JC, Bordey A (2011) Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 121:1596–1607PubMedCrossRefGoogle Scholar
  25. 25.
    Fukutani Y, Yasuda M, Saitoh C, Kyoya S, Kobayashi K, Miyazu K, Nakamura I (1992) An autopsy case of tuberous sclerosis. Histological and immunohistochemical study. Histol Histopathol 7:709–714PubMedGoogle Scholar
  26. 26.
    Gallagher A, Grant EP, Madan N et al (2010) MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol 257:1373–1381PubMedCrossRefGoogle Scholar
  27. 27.
    Gao X, Pan D (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 15:1383–1392PubMedCrossRefGoogle Scholar
  28. 28.
    Goorden SM, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y (2007) Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann Neurol 62:648–655PubMedCrossRefGoogle Scholar
  29. 29.
    Goto J, Talos DM, Klein P et al (2011) Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci USA. 108(45):E1070–E1079PubMedCrossRefGoogle Scholar
  30. 30.
    Grajkowska W, Kotulska K, Jurkiewicz E, Roszkowski M, Daszkiewicz P, Jóźwiak S, Matyja E (2011) Subependymal giant cell astrocytomas with atypical histological features mimicking malignant gliomas. Folia Neuropathol 49:39–46PubMedGoogle Scholar
  31. 31.
    Green AJ, Smith M, Yates JR (1994) Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet 6:193–196PubMedCrossRefGoogle Scholar
  32. 32.
    Henske EP, Scheithauer BW, Short MP et al (1996) Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 59:400–406PubMedGoogle Scholar
  33. 33.
    Henske EP, Wessner LL, Golden J et al (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol 151:1639–1647PubMedGoogle Scholar
  34. 34.
    Hirose T, Scheithauer BW, Lopes MB, Gerber HA, Altermatt HJ, Hukee MJ, VandenBerg SR, Charlesworth JC (1995) Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropath 90:387–399PubMedCrossRefGoogle Scholar
  35. 35.
    Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322PubMedCrossRefGoogle Scholar
  36. 36.
    Huang J, Manning BD (2008) The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190PubMedCrossRefGoogle Scholar
  37. 37.
    Huang J, Wu S, Wu CL, Manning BD (2009) Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 69:6107–6114PubMedCrossRefGoogle Scholar
  38. 38.
    Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128PubMedCrossRefGoogle Scholar
  39. 39.
    Jansen LA, Uhlmann EJ, Crino PB, Gutmann DH, Wong M (2005) Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1 deficient astrocytes. Epilepsia 46:1871–1880PubMedCrossRefGoogle Scholar
  40. 40.
    Jones AC, Daniells CE, Snell RG et al (1997) Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum Mol Genet 6:2155–2161PubMedCrossRefGoogle Scholar
  41. 41.
    Jones AC, Shyamsundar MM, Thomas MW et al (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 64:1305–1315PubMedCrossRefGoogle Scholar
  42. 42.
    Kobayashi T, Minowa O, Sugitani Y et al (2001) A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci USA. 98:8762–8767PubMedCrossRefGoogle Scholar
  43. 43.
    Krueger DA, Care MM, Holland K et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811PubMedCrossRefGoogle Scholar
  44. 44.
    Kyin R, Hua Y, Baybis M, Scheithauer B, Kolson D, Uhlmann E, Gutmann D, Crino PB (2001) Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am J Pathol 159:1541–1554PubMedCrossRefGoogle Scholar
  45. 45.
    Lamb RF, Roy C, Diefenbach TJ et al (2000) The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2:281–287PubMedCrossRefGoogle Scholar
  46. 46.
    Larson Y, Liu J, Stevens PD et al (2010) Tuberous sclerosis complex 2 (TSC2) regulates cell migration and polarity through activation of CDC42 and RAC1. J Biol Chem 285:24987–24998PubMedCrossRefGoogle Scholar
  47. 47.
    Lee A, Maldonado M, Baybis M, Walsh CA, Scheithauer B, Yeung R, Parent J, Weiner HL, Crino PB (2003) Markers of cellular proliferation are expressed in cortical tubers. Ann Neurol 53(5):668–673PubMedCrossRefGoogle Scholar
  48. 48.
    Lee-Jones L, Aligianis I, Davies PA, Puga A, Farndon PA, Stemmer-Rachamimov A, Ramesh V, Sampson JR (2004) Sacrococcygeal chordomas in patients with tuberous sclerosis complex show somatic loss of TSC1 or TSC2. Genes Chromosomes Cancer 41:80–85PubMedCrossRefGoogle Scholar
  49. 49.
    Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR (1996) Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol 91:368–375PubMedCrossRefGoogle Scholar
  50. 50.
    Ma J, Meng Y, Kwiatkowski DJ et al (2010) Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Investig 120:103–114PubMedCrossRefGoogle Scholar
  51. 51.
    Maldonado M, Baybis M, Newman D, Kolson DL, Chen W, McKhann G 2nd, Gutmann DH, Crino PB (2003) Expression of ICAM-1, TNF-alpha, NFkappaB, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis 14:279–290PubMedCrossRefGoogle Scholar
  52. 52.
    Marcotte L, Aronica E, Baybis M, Crino PB (2012) Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex. Acta Neuropathol 123:685–693PubMedCrossRefGoogle Scholar
  53. 53.
    McMaster ML, Goldstein AM, Parry DM (2011) Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population. J Med Genet 48:444–449PubMedCrossRefGoogle Scholar
  54. 54.
    Meikle L, Talos DM, Onda H et al (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27:5546–5558PubMedCrossRefGoogle Scholar
  55. 55.
    Miyata H, Chiang AC, Vinters HV (2004) Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol 56(4):510–519PubMedCrossRefGoogle Scholar
  56. 56.
    Mizuguchi M, Takashima S (2001) Neuropathology of tuberous sclerosis. Brain Dev 23(7):508–515PubMedCrossRefGoogle Scholar
  57. 57.
    Napolioni V, Moavero R, Curatolo P (2009) Recent advances in neurobiology of tuberous sclerosis complex. Brain Dev 31:104–113PubMedCrossRefGoogle Scholar
  58. 58.
    Nie D, Di Nardo A, Han JM et al (2010) Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci 13:163–172PubMedCrossRefGoogle Scholar
  59. 59.
    Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ, Sims K, MacCollin M, Louis DN, Ramesh V (2001) Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 69:493–503PubMedCrossRefGoogle Scholar
  60. 60.
    Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10:2305–2316PubMedCrossRefGoogle Scholar
  61. 61.
    Onda H, Crino PB, Zhang H, Murphey RD, Rastelli L, Gould Rothberg BE, Kwiatkowski DJ (2002) Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol Cell Neurosci 21(4):561–574PubMedCrossRefGoogle Scholar
  62. 62.
    Orlova KA, Tsai V, Baybis M et al (2010) Early progenitor cell marker expression distinguishes type II from type I focal cortical dysplasias. J Neuropath Exp Neurol 69(8):850–863PubMedCrossRefGoogle Scholar
  63. 63.
    Osborne JP, Fryer A, Webb D (1991) Epidemiology of tuberous sclerosis. Ann NY Acad Sci 615:125–127PubMedCrossRefGoogle Scholar
  64. 64.
    Park SH, Pepkowitz SH, Kerfoot C et al (1997) Tuberous sclerosis in a 20-week gestation fetus: immunohistochemical study. Acta Neuropathol 94:180–186PubMedCrossRefGoogle Scholar
  65. 65.
    Parker WE, Orlova KA, Heuer GG et al (2011) Enhanced epidermal growth factor, hepatocyte growth factor, and vascular endothelial growth factor expression in tuberous sclerosis complex. Am J Pathol 178:296–305PubMedCrossRefGoogle Scholar
  66. 66.
    Peterson TR, Laplante M, Thoreen CC et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886PubMedCrossRefGoogle Scholar
  67. 67.
    Potter CJ, Huang H, Xu T (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105:357–368PubMedCrossRefGoogle Scholar
  68. 68.
    Prabowo AS, Anink JJ, Lammens M et al (2013) Fetal Brain Lesions in Tuberous Sclerosis Complex: TORC1 Activation and Inflammation. Brain Pathol 23:45–49Google Scholar
  69. 69.
    Qin W, Chan JA, Vinters HV et al (2010) Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 20:1096–1105PubMedCrossRefGoogle Scholar
  70. 70.
    Qin W, Kozlowski P, Taillon BE et al (2010) Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum Genet 127:573–582PubMedCrossRefGoogle Scholar
  71. 71.
    Reith RM, Way S, McKenna J 3rd, Haines K, Gambello MJ (2011) Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiol Dis 43:113–122PubMedCrossRefGoogle Scholar
  72. 72.
    Ridler K, Bullmore ET, De Vries PJ et al (2001) Widespread anatomical abnormalities of grey and white matter structure in tuberous sclerosis. Psychol Med 31:1437–1446PubMedCrossRefGoogle Scholar
  73. 73.
    Roach ES, Smith M, Huttenlocher P et al (1992) Diagnostic criteria: tuberous sclerosis complex. Report of the Diagnostic Criteria Committee of the National Tuberous Sclerosis Association. J Child Neurol 7:221–224PubMedCrossRefGoogle Scholar
  74. 74.
    Roach ES, Gomez MR, Northrup H (1998) Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol 3:624–628CrossRefGoogle Scholar
  75. 75.
    Rosner M, Hengstschlager M (2004) Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J Biol Chem 279:48707–48715PubMedCrossRefGoogle Scholar
  76. 76.
    Rüegg S, Baybis M, Juul H, Dichter M, Crino PB (2007) Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res 77:85–92PubMedCrossRefGoogle Scholar
  77. 77.
    Sancak O, Nellist M, Goedbloed M et al (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13:731–741PubMedCrossRefGoogle Scholar
  78. 78.
    Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603PubMedCrossRefGoogle Scholar
  79. 79.
    Sato N, Koinuma J, Ito T et al (2010) Activation of an oncogenic TBC1D7 (TBC1 domain family, member 7) protein in pulmonary carcinogenesis. Genes Chromosomes Cancer 49:353–367PubMedGoogle Scholar
  80. 80.
    Sharma M, Ralte A, Arora R, Santosh V, Shankar SK, Sarkar C (2004) Subependymal giant cell astrocytoma: a clinicopathological study of 23 cases with special emphasis on proliferative markers and expression of p53 and retinoblastoma gene proteins. Pathology 36:139–144PubMedCrossRefGoogle Scholar
  81. 81.
    Sosunov AA, Wu X, Weiner HL, Mikell CB, Goodman RR, Crino PB, McKhann GM 2nd (2008) Tuberous sclerosis: a primary pathology of astrocytes? Epilepsia 49(Suppl 2):53–62PubMedCrossRefGoogle Scholar
  82. 82.
    Takahashi DK, Dinday MT, Barbaro NM, Baraban SC (2004) Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia 45:1525–1530PubMedCrossRefGoogle Scholar
  83. 83.
    Takei H, Adesina AM, Powell SZ (2009) Solitary subependymal giant cell astrocytoma incidentally found at autopsy in an elderly woman without tuberous sclerosis complex. Neuropathology 29:181–186PubMedCrossRefGoogle Scholar
  84. 84.
    Talos DM, Kwiatkowski DJ, Cordero K, Black PM, Jensen FE (2008) Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann Neurol 63:454–465PubMedCrossRefGoogle Scholar
  85. 85.
    Tavazoie SF, Alvarez VA, Ridenour DA et al (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8:1727–1734PubMedCrossRefGoogle Scholar
  86. 86.
    Tee AR, Manning BD, Roux PP et al (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268PubMedCrossRefGoogle Scholar
  87. 87.
    Tsai V, Parker WE, Orlova KA et al (2012) Fetal Brain mTOR Signaling Activation in Tuberous Sclerosis Complex. Cereb Cortex. October 18 [Epub Ahead of print]Google Scholar
  88. 88.
    Tsai PT, Hull C, Chu Y et al (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–651. doi: 10.1038/nature11310 Google Scholar
  89. 89.
    Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, Roszkowski M, Jozwiak S, Kaminska B (2010) Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176(4):1878–1890PubMedCrossRefGoogle Scholar
  90. 90.
    Uhlmann EJ, Wong M, Baldwin RL et al (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296PubMedCrossRefGoogle Scholar
  91. 91.
    van Slegtenhorst M, de Hoogt R, Hermans C et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808PubMedCrossRefGoogle Scholar
  92. 92.
    van Slegtenhorst M, Verhoef S, Tempelaars A et al (1999) Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype-phenotype correlation. J Med Genet 36:285–289PubMedGoogle Scholar
  93. 93.
    Vaughn J, Hagiwara M, Katz J, Roth J, Devinsky O, Weiner H, Milla S (2012) MRI Characterization and longitudinal study of focal cerebellar lesions in a young tuberous sclerosis cohort. AJNR Am J Neuroradiol. 2012 Sep 6 [Epub ahead of print]Google Scholar
  94. 94.
    Way SW, McKenna J 3rd, Mietzsch U et al (2009) Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet 18:1252–1265PubMedCrossRefGoogle Scholar
  95. 95.
    White R, Hua Y, Lynch DR, Scheitauer B, Crino PB (2001) Differential transcription of neurotransmitter receptor subunits and uptake sites in giant cells and dysplastic neurons in cortical tubers. Ann Neurol 49:67–78PubMedCrossRefGoogle Scholar
  96. 96.
    Wong M, Ess K, Uhlmann EJ et al (2003) Impaired astrocyte glutamate transport in a mouse epilepsy model of tuberous sclerosis complex. Ann Neurol 54:251–256PubMedCrossRefGoogle Scholar
  97. 97.
    Wong M, Crino PB (2012) Tuberous sclerosis and epilepsy: role of astrocytes. Glia 60:1244–1250PubMedCrossRefGoogle Scholar
  98. 98.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  99. 99.
    Xu L, Zeng LH, Wong M (2009) Impaired astrocyte gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Neurobiol Dis 34:291–299PubMedCrossRefGoogle Scholar
  100. 100.
    Yang Q, Inoki K, Kim E, Guan KL (2006) TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci USA 103:6811–6816PubMedCrossRefGoogle Scholar
  101. 101.
    Yu Y, Yoon SO, Poulogiannis G et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326PubMedCrossRefGoogle Scholar
  102. 102.
    Yuan E, Tsai PT, Greene-Colozzi E, Sahin M, Kwiatkowski DJ, Malinowska IA (2012) Graded loss of tuberin in an allelic series of brain models of TSC correlates with survival, and biochemical, histological and behavioral features. Hum Mol Genet 21:4286–4300PubMedCrossRefGoogle Scholar
  103. 103.
    Zeng Z, dos Sarbassov D, Samudio IJ et al (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109:3509–3512PubMedCrossRefGoogle Scholar
  104. 104.
    Zeng LH, Xu L, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63:444–453PubMedCrossRefGoogle Scholar
  105. 105.
    Zeng LH, Rensing NR, Zhang B et al (2011) Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet 20:445–454PubMedCrossRefGoogle Scholar
  106. 106.
    Zeng LH, Bero AW, Zhang B, Holtzman DM, Wong M (2010) Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiol Dis 37(3):764–771PubMedCrossRefGoogle Scholar
  107. 107.
    Zhou J, Shrikhande G, Xu J et al (2011) Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev 25:1595–1600PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of NeurologyShriners Hospitals Pediatric Research Center, Temple University School of MedicinePhiladelphiaUSA

Personalised recommendations