Acta Neuropathologica

, Volume 125, Issue 3, pp 439–457 | Cite as

VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy

  • Nivetha Ramachandran
  • Iulia Munteanu
  • Peixiang Wang
  • Alessandra Ruggieri
  • Jennifer J. Rilstone
  • Nyrie Israelian
  • Taline Naranian
  • Paul Paroutis
  • Ray Guo
  • Zhi-Ping Ren
  • Ichizo Nishino
  • Brigitte Chabrol
  • Jean-Francois Pellissier
  • Carlo Minetti
  • Bjarne Udd
  • Michel Fardeau
  • Chetankumar S. Tailor
  • Don J. Mahuran
  • John T. Kissel
  • Hannu Kalimo
  • Nicolas Levy
  • Morris F. Manolson
  • Cameron A. Ackerley
  • Berge A. Minassian
Original Paper


X-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids which leads to downregulation of the mTORC1 pathway, and consequent increased macroautophagy resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge, and vacuolate the cell. Our results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy.


Vacuolar myopathy Autophagy Vacuolar ATP-ase Splicing mutations Lysosomal acidification 



We wish to thank all the XMEA families. We are grateful to Drs. G. Israelian, V.C. Juel, M. Villanova, the late G. Karpati, S. Carpenter, and D. Figarella-Branger for the clinicopathologic diagnosis of some of the patients included in this study, previously published in clinical journals. We thank Drs. S. Grinstein for helpful discussions and Drs. J Rommens and S Meyn for their review of our manuscript, T. Sarkisyan, J. Kere, E. Heon, F. Zara and H. Lohi for ethnic control DNA samples, A. Leung for assistance with experiments in Supplemental Fig. 12, N. Ochtony for Supplemental Fig. 1A, P. Bradhsaw for assistance in deconvolution microscopy. Principal funding was from the Canadian Institutes of Health Research. The Association Française contre les Myopathies provided support to N. Levy, EVO Funds of Helsinki and Turku University Hospitals (Finland) and sports research grant from Ministry of Education of Finland to H. Kalimo, and the Natural Sciences and Engineering Research Council (Canada) to I. Munteanu.

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical standard

This study was approved by the Research Ethics Board of the Hospital for Sick Children Toronto and informed consent was obtained from all subjects.

Supplementary material

401_2012_1073_MOESM1_ESM.eps (17.9 mb)
Supplementary material 1 (EPS 18304 kb)
401_2012_1073_MOESM2_ESM.eps (3.7 mb)
Supplementary material 2 (EPS 3793 kb)
401_2012_1073_MOESM3_ESM.eps (7.9 mb)
Supplementary material 3 (EPS 8138 kb)
401_2012_1073_MOESM4_ESM.eps (3.1 mb)
Supplementary material 4 (EPS 3209 kb)
401_2012_1073_MOESM5_ESM.eps (6.3 mb)
Supplementary material 5 (EPS 6430 kb)
401_2012_1073_MOESM6_ESM.eps (12.7 mb)
Supplementary material 6 (EPS 12998 kb)
401_2012_1073_MOESM7_ESM.eps (2.7 mb)
Supplementary material 7 (EPS 2790 kb)
401_2012_1073_MOESM8_ESM.doc (194 kb)
Supplementary material 8 (DOC 193 kb)
401_2012_1073_MOESM9_ESM.eps (2.9 mb)
Supplementary material 9 (EPS 2977 kb)
401_2012_1073_MOESM10_ESM.eps (3.9 mb)
Supplementary material 10 (EPS 4018 kb)
401_2012_1073_MOESM11_ESM.eps (9.6 mb)
Supplementary material 11 (EPS 9857 kb)
401_2012_1073_MOESM12_ESM.eps (6.3 mb)
Supplementary material 12 (EPS 6421 kb)
401_2012_1073_MOESM13_ESM.eps (708 kb)
Supplementary material 13 (EPS 708 kb)


  1. 1.
    Beugnet A, Tee AR, Taylor PM, Proud CG (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 372:555–566PubMedCrossRefGoogle Scholar
  2. 2.
    Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326PubMedCrossRefGoogle Scholar
  3. 3.
    Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553PubMedCrossRefGoogle Scholar
  4. 4.
    Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17:839–849PubMedCrossRefGoogle Scholar
  5. 5.
    Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295PubMedCrossRefGoogle Scholar
  6. 6.
    Demaurex N, Furuya W, D’Souza S, Bonifacino JS, Grinstein S (1998) Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and furin from the cell surface. J Biol Chem 273:2044–2051PubMedCrossRefGoogle Scholar
  7. 7.
    Drose S, Altendorf K (1997) Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol 200:1–8PubMedGoogle Scholar
  8. 8.
    Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929PubMedCrossRefGoogle Scholar
  9. 9.
    Frattini A, Orchard PJ, Sobacchi C et al (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346PubMedCrossRefGoogle Scholar
  10. 10.
    Fukuda K, Hirai Y, Yoshida H, Nakajima T, Usui T (1982) Free amino acid content of lymphocytes and granulocytes compared. Clin Chem 28:1758–1761PubMedGoogle Scholar
  11. 11.
    Huss M, Sasse F, Kunze B (2005) Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC Biochem 6:13PubMedCrossRefGoogle Scholar
  12. 12.
    Kalimo H, Savontaus ML, Lang H et al (1988) X-linked myopathy with excessive autophagy: a new hereditary muscle disease. Ann Neurol 23:258–265PubMedCrossRefGoogle Scholar
  13. 13.
    Karet FE, Finberg KE, Nelson RD et al (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90PubMedCrossRefGoogle Scholar
  14. 14.
    Kornak U, Reynders E, Dimopoulou A et al (2008) Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat Genet 40:32–34PubMedCrossRefGoogle Scholar
  15. 15.
    Kovacs AL, Reith A, Seglen PO (1982) Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp Cell Res 137:191–201PubMedCrossRefGoogle Scholar
  16. 16.
    Li JB, Goldberg AL (1976) Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol 231:441–448PubMedGoogle Scholar
  17. 17.
    Malicdan MC, Noguchi S, Nonaka I, Saftig P, Nishino I (2008) Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscul Disord 18:521–529PubMedCrossRefGoogle Scholar
  18. 18.
    Malkus P, Graham LA, Stevens TH, Schekman R (2004) Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol Biol Cell 15:5075–5091PubMedCrossRefGoogle Scholar
  19. 19.
    Mammucari C, Schiaffino S, Sandri M (2008) Downstream of Akt: foxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 4:524–526PubMedGoogle Scholar
  20. 20.
    Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM (2006) Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA 103:5805–5810PubMedCrossRefGoogle Scholar
  21. 21.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873PubMedCrossRefGoogle Scholar
  22. 22.
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMedCrossRefGoogle Scholar
  23. 23.
    Munteanu I, Ramachandran N, Mnatzakanian GN et al (2008) Fine-mapping the gene for X-linked myopathy with excessive autophagy. Neurology 71:951–953PubMedCrossRefGoogle Scholar
  24. 24.
    Nishino I, Fu J, Tanji K et al (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910PubMedCrossRefGoogle Scholar
  25. 25.
    Ostenfeld MS, Hoyer-Hansen M, Bastholm L et al (2008) Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 4:487–499PubMedGoogle Scholar
  26. 26.
    Paroutis P, Touret N, Grinstein S (2004) The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 19:207–215CrossRefGoogle Scholar
  27. 27.
    Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275:27447–27456PubMedGoogle Scholar
  28. 28.
    Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584:1411–1416PubMedCrossRefGoogle Scholar
  29. 29.
    Scornik OA, Howell SK, Botbol V (1997) Protein depletion and replenishment in mice: different roles of muscle and liver. Am J Physiol 273:E1158–E1167PubMedGoogle Scholar
  30. 30.
    Scott JA, North ML, Rafii M et al (2011) Asymmetric dimethylarginine is increased in asthma. Am J Respir Crit Care Med 184:779–785PubMedCrossRefGoogle Scholar
  31. 31.
    Shacka JJ, Klocke BJ, Shibata M et al (2006) Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Mol Pharmacol 69:1125–1136PubMedCrossRefGoogle Scholar
  32. 32.
    Sharma R, Deng H, Leung A, Mahuran D (2001) Identification of the 6-sulfate binding site unique to alpha-subunit-containing isozymes of human beta-hexosaminidase. Biochemistry 40:5440–5446PubMedCrossRefGoogle Scholar
  33. 33.
    Stauber WT, Hedge AM, Trout JJ, Schottelius BA (1981) Inhibition of lysosomal function in red and white skeletal muscles by chloroquine. Exp Neurol 71:295–306PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka Y, Guhde G, Suter A et al (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906PubMedCrossRefGoogle Scholar
  35. 35.
    Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685PubMedGoogle Scholar
  36. 36.
    Villanova M, Louboutin JP, Chateau D et al (1995) X-linked vacuolated myopathy: complement membrane attack complex on surface membrane of injured muscle fibers. Ann Neurol 37:637–645PubMedCrossRefGoogle Scholar
  37. 37.
    Webber JL, Tooze SA (2010) Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J 29:27–40PubMedCrossRefGoogle Scholar
  38. 38.
    Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nivetha Ramachandran
    • 1
  • Iulia Munteanu
    • 1
    • 2
    • 3
  • Peixiang Wang
    • 1
  • Alessandra Ruggieri
    • 1
  • Jennifer J. Rilstone
    • 1
    • 2
  • Nyrie Israelian
    • 1
  • Taline Naranian
    • 1
  • Paul Paroutis
    • 4
  • Ray Guo
    • 1
  • Zhi-Ping Ren
    • 1
  • Ichizo Nishino
    • 5
  • Brigitte Chabrol
    • 6
  • Jean-Francois Pellissier
    • 7
  • Carlo Minetti
    • 8
  • Bjarne Udd
    • 9
  • Michel Fardeau
    • 10
  • Chetankumar S. Tailor
    • 4
  • Don J. Mahuran
    • 1
  • John T. Kissel
    • 11
  • Hannu Kalimo
    • 12
    • 13
  • Nicolas Levy
    • 14
  • Morris F. Manolson
    • 15
  • Cameron A. Ackerley
    • 16
  • Berge A. Minassian
    • 1
    • 2
    • 17
  1. 1.Program in Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Institute of Medical SciencesUniversity of TorontoTorontoCanada
  3. 3.Dubowitz Neuromuscular CentreUCL Institute of Child HealthLondonUK
  4. 4.Program in Cell BiologyThe Hospital for Sick ChildrenTorontoCanada
  5. 5.Department of Neuromuscular ResearchNational Center of Neurology and PsychiatryKodairaJapan
  6. 6.Unité de Médecine InfantileHôpital D’enfantsMarseilleFrance
  7. 7.Laboratoire d’Anatomie Pathologique et NeuropathologieHôpital de la TimoneMarseilleFrance
  8. 8.Muscular and Neurodegenerative Disease UnitG. Gaslini Institute and University of GenovaGenoaItaly
  9. 9.Department of NeurologyVaasa Central Hospital and Tampere UniversityVaasaFinland
  10. 10.Myology InstituteSalpetriere HospitalParisFrance
  11. 11.Department of NeurologyOhio State UniversityColumbusUSA
  12. 12.Haartman Institute Department of PathologyUniversity of HelsinkiHelsinginFinland
  13. 13.Departments of Pathology and Forensic Medicine, Institute of BiomedicineUniversity of TurkuTurkuFinland
  14. 14.Faculté de Médecine de Marseille, Inserm UMR_S910Université de la MéditerranéeMarseilleFrance
  15. 15.Faculty of DentistryUniversity of TorontoTorontoCanada
  16. 16.Department of Pathology and Laboratory MedicineThe Hospital for Sick ChildrenTorontoCanada
  17. 17.Division of Neurology, Department of PaediatricsThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations