Acta Neuropathologica

, Volume 124, Issue 5, pp 693–704 | Cite as

The MAPT H1 haplotype is associated with tangle-predominant dementia

  • Ismael Santa-Maria
  • Aya Haggiagi
  • Xinmin Liu
  • Jessica Wasserscheid
  • Peter T. Nelson
  • Ken Dewar
  • Lorraine N. Clark
  • John F. Crary
Original Paper

Abstract

Tangle-predominant dementia (TPD) patients exhibit cognitive decline that is clinically similar to early to moderate-stage Alzheimer disease (AD), yet autopsy reveals neurofibrillary tangles in the medial temporal lobe composed of the microtubule-associated protein tau without significant amyloid-beta (Aβ)-positive plaques. We performed a series of neuropathological, biochemical and genetic studies using autopsy brain tissue drawn from a cohort of 34 TPD, 50 AD and 56 control subjects to identify molecular and genetic signatures of this entity. Biochemical analysis demonstrates a similar tau protein isoform composition in TPD and AD, which is compatible with previous histological and ultrastructural studies. Further, biochemical analysis fails to uncover elevation of soluble Aβ in TPD frontal cortex and hippocampus compared to control subjects, demonstrating that non-plaque-associated Aβ is not a contributing factor. Unexpectedly, we also observed high levels of secretory amyloid precursor protein α (sAPPα) in the frontal cortex of some TPD patients compared to AD and control subjects, suggesting differences in APP processing. Finally, we tested whether TPD is associated with changes in the tau gene (MAPT). Haplotype analysis demonstrates a strong association between TPD and the MAPT H1 haplotype, a genomic inversion associated with some tauopathies and Parkinson disease (PD), when compared to age-matched control subjects with mild degenerative changes, i.e., successful cerebral aging. Next-generation resequencing of MAPT followed by association analysis shows an association between TPD and two polymorphisms in the MAPT 3′ untranslated region (UTR). These results support the hypothesis that haplotype-specific variation in the MAPT 3′ UTR underlies an Aβ-independent mechanism for neurodegeneration in TPD.

Keywords

Dementia Neurofibrillary tangle Tau Amyloid MAPT 3′ Untranslated region Aging Alzheimer’s disease sAPPα 

Notes

Acknowledgments

We express our deepest gratitude to the patients and staff of the contributing centers and institutes, including the Taub Institute for Research on Alzheimer’s Disease & the Aging Brain at Columbia University [(P50AG08702/RO1AG037212), the Washington/Hamilton Heights-Inwood Columbia Aging Project (P01AG07232) and the Essential Tremor Centralized Brain Repository (R01NS042859)], the Sanders-Brown Center on Aging at the University of Kentucky (P30AG028383), the Shiley-Marcos Alzheimer’s Disease Research Center at the University of California San Diego (P50AG05131), the Northwestern University Alzheimer’s Disease Center (AG13854 and the NADC Neuropathology Core Tissue Bank), the Washington University School of Medicine, St. Louis, MO [NIA P50-AG05681, P01-AG03991), the Hope Center for Neurological Disorders, and the Charles F. & Joanne Knight Alzheimer’s Disease Research Center], the University of Washington Neuropathology Core [Alzheimer’s Disease Research Center (AG05136), the Adult Changes in Thought Study (AG006781), and Morris K Udall Center of Excellence for Parkinson’s Disease Research (NS062684)], and the Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona [National Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinson’s Disease and Related Disorders), the National Institute on Aging (P30 AG19610 Arizona Alzheimer’s Disease Core Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer’s Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease Consortium) and the Michael J. Fox Foundation for Parkinson’s Research]. We thank Drs. Michael L. Shelanski and Richard Mayeux. We also thank Drs. Jean-Paul Vonsattel and Lawrence Honig for providing the patients’ clinical and neuropathological data. We thank Dr. Etty Cortes for helpful comments and neuropathology core support. We thank Arlene Lawton for coordination of brain donations at Columbia University. We further thank Drs. Karen Duff and James E. Goldman for helpful comments. We thank Dr. Peter Davies for the phospho-tau antisera. Finally, we thank Kristy Brown for electron microscopy support. This project was funded in part by American Recovery and Reinvestment Act (ARRA) funds through Grant number P30AG036453 (MLS). This project was also supported by the Alzheimer’s Association (NIRG-11-204450) and the Louis V. Gerstner, Jr., Foundation (JFC).

Supplementary material

401_2012_1017_MOESM1_ESM.xlsx (322 kb)
Supplementary material 1 (XLSX 322 kb)

References

  1. 1.
    Abraham R, Sims R, Carroll L, Hollingworth P, O’Donovan MC, Williams J, Owen MJ (2009) An association study of common variation at the MAPT locus with late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 150B:1152–1155PubMedCrossRefGoogle Scholar
  2. 2.
    Ambros V, Horvitz HR (1987) The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Gene Dev 1:398–414PubMedCrossRefGoogle Scholar
  3. 3.
    Andreadis A (2005) Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta 1739:91–103PubMedCrossRefGoogle Scholar
  4. 4.
    Aronov S, Aranda G, Behar L, Ginzburg I (2001) Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J Neurosci Off J Soc Neurosci 21:6577–6587Google Scholar
  5. 5.
    Aronov S, Marx R, Ginzburg I (1999) Identification of 3′UTR region implicated in tau mRNA stabilization in neuronal cells. J Mol Neurosci 12:131–145PubMedCrossRefGoogle Scholar
  6. 6.
    Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, Hardy J, Lynch T, Bigio E, Hutton M (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 8:711–715PubMedCrossRefGoogle Scholar
  7. 7.
    Bancher C, Jellinger KA (1994) Neurofibrillary tangle predominant form of senile dementia of Alzheimer type: a rare subtype in very old subjects. Acta Neuropathol 88:565–570PubMedCrossRefGoogle Scholar
  8. 8.
    Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23:228–242PubMedCrossRefGoogle Scholar
  9. 9.
    Bouras C, Hof PR, Giannakopoulos P, Michel JP, Morrison JH (1994) Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. Cereb Cortex 4:138–150PubMedCrossRefGoogle Scholar
  10. 10.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  11. 11.
    Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33:403–408PubMedCrossRefGoogle Scholar
  12. 12.
    Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22PubMedCrossRefGoogle Scholar
  13. 13.
    Clark LN, Kartsaklis LA, Wolf Gilbert R et al (2009) Association of glucocerebrosidase mutations with dementia with lewy bodies. Arch Neurol 66:578–583PubMedCrossRefGoogle Scholar
  14. 14.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923PubMedCrossRefGoogle Scholar
  15. 15.
    Crary JF, Shao CY, Mirra SS, Hernandez AI, Sacktor TC (2006) Atypical protein kinase C in neurodegenerative disease I: PKMzeta aggregates with limbic neurofibrillary tangles and AMPA receptors in Alzheimer disease. J Neuropathol Exp Neurol 65:319–326PubMedCrossRefGoogle Scholar
  16. 16.
    Davidsson P, Bogdanovic N, Lannfelt L, Blennow K (2001) Reduced expression of amyloid precursor protein, presenilin-1 and rab3a in cortical brain regions in Alzheimer’s disease. Dement Geriatr Cogn Disord 12:243–250PubMedCrossRefGoogle Scholar
  17. 17.
    Devanand DP, Mikhno A, Pelton GH, Cuasay K, Pradhaban G, Dileep Kumar JS, Upton N, Lai R, Gunn RN, Libri V, Liu X, van Heertum R, Mann JJ, Parsey RV (2010) Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18 F-FDG) PET in patients with Alzheimer disease, mild cognitive impairment, and healthy controls. J Geriatr Psychiatry Neurol 23:185–198PubMedCrossRefGoogle Scholar
  18. 18.
    Di Maria E, Tabaton M, Vigo T, Abbruzzese G, Bellone E, Donati C, Frasson E, Marchese R, Montagna P, Munoz DG, Pramstaller PP, Zanusso G, Ajmar F, Mandich P (2000) Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Ann Neurol 47:374–377PubMedCrossRefGoogle Scholar
  19. 19.
    Foster N, King R, Wang A, Landau S, Jagust W, Chen K, Reiman E (2012) Diagnostic classification with amyloid PET and FDG-PET among clinically diagnosed Alzheimer’s disease patients in the Alzheimer’s disease Neuroimaging Initiative. Human Amyloid Imaging Abstract Jan 1Google Scholar
  20. 20.
    Gasparini L, Terni B, Spillantini MG (2007) Frontotemporal dementia with tau pathology. Neurodegener Dis 4:236–253PubMedCrossRefGoogle Scholar
  21. 21.
    Gavett BE, Stern RA, Cantu RC, Nowinski CJ, McKee AC (2010) Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther 2:18PubMedCrossRefGoogle Scholar
  22. 22.
    Ghebranious N, Ivacic L, Mallum J, Dokken C (2005) Detection of ApoE E2, E3 and E4 alleles using MALDI-TOF mass spectrometry and the homogeneous mass-extend technology. Nucleic Acids Res 33:e149PubMedCrossRefGoogle Scholar
  23. 23.
    Giliberto L, Zhou D, Weldon R, Tamagno E, De Luca P, Tabaton M, D’Adamio L (2008) Evidence that the amyloid beta precursor protein-intracellular domain lowers the stress threshold of neurons and has a “regulated” transcriptional role. Mol Neurodegener 3:12PubMedCrossRefGoogle Scholar
  24. 24.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356PubMedCrossRefGoogle Scholar
  25. 25.
    Hayesmoore JB, Bray NJ, Cross WC, Owen MJ, O’Donovan MC, Morris HR (2009) The effect of age and the H1c MAPT haplotype on MAPT expression in human brain. Neurobiol Aging 30:1652–1656PubMedCrossRefGoogle Scholar
  26. 26.
    Herrmann N, Chau SA, Kircanski I, Lanctot KL (2011) Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs 71:2031–2065PubMedCrossRefGoogle Scholar
  27. 27.
    Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc 8:1–13Google Scholar
  28. 28.
    Ikeda K, Akiyama H, Sahara N, Mori H, Usami M, Sakata M, Mizutani T, Wakabayashi K, Takahasi H (1997) Senile dementia with abundant neurofibrillary tangles without accompanying senile plaques: a subset of senile dementia with high incidence of the APOE e2 Allele. In: Iqbal K, Winblad B, Nishimura T, Takeda M, Wisniewski HM (eds) Alzheimer’s disease: biology, diagnosis and therapeutics, 1st edn. Wiley, New YorkGoogle Scholar
  29. 29.
    Ikeda K, Akiyama H, Arai T, Oda T, Kato M, Iseki E, Kosaka K, Wakabayashi K, Takahashi H (1999) Clinical aspects of ‘senile dementia of the tangle type’—a subset of dementia in the senium separable from late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 10:6–11PubMedCrossRefGoogle Scholar
  30. 30.
    Ikeda K, Akiyama H, Arai T, Sahara N, Mori H, Usami M, Sakata M, Mizutani T, Wakabayashi K, Takahashi H (1997) A subset of senile dementia with high incidence of the apolipoprotein E epsilon2 allele. Ann Neurol 41:693–695PubMedCrossRefGoogle Scholar
  31. 31.
    Iseki E, Yamamoto R, Murayama N, Minegishi M, Togo T, Katsuse O, Kosaka K, Akiyama H, Tsuchiya K, de Silva R, Andrew L, Arai H (2006) Immunohistochemical investigation of neurofibrillary tangles and their tau isoforms in brains of limbic neurofibrillary tangle dementia. Neurosci Lett 405:29–33PubMedCrossRefGoogle Scholar
  32. 32.
    Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697PubMedCrossRefGoogle Scholar
  33. 33.
    Jellinger KA, Attems J (2007) Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathol 113:107–117PubMedCrossRefGoogle Scholar
  34. 34.
    Jellinger KA, Bancher C (1998) Senile dementia with tangles (tangle predominant form of senile dementia). Brain Pathol 8:367–376PubMedCrossRefGoogle Scholar
  35. 35.
    Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133:142–150PubMedCrossRefGoogle Scholar
  36. 36.
    Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197:192–193PubMedCrossRefGoogle Scholar
  37. 37.
    Ksiezak-Reding H, Wall JS (1994) Mass and physical dimensions of two distinct populations of paired helical filaments. Neurobiol Aging 15:11–19PubMedCrossRefGoogle Scholar
  38. 38.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  39. 39.
    Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10:243–254PubMedCrossRefGoogle Scholar
  40. 40.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944PubMedCrossRefGoogle Scholar
  41. 41.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486PubMedCrossRefGoogle Scholar
  42. 42.
    Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11PubMedCrossRefGoogle Scholar
  43. 43.
    Mukherjee O, Kauwe JS, Mayo K, Morris JC, Goate AM (2007) Haplotype-based association analysis of the MAPT locus in late onset Alzheimer’s disease. BMC Genet 8:3PubMedCrossRefGoogle Scholar
  44. 44.
    Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796PubMedCrossRefGoogle Scholar
  45. 45.
    Myers AJ, Kaleem M, Marlowe L, Pittman AM, Lees AJ, Fung HC, Duckworth J, Leung D, Gibson A, Morris CM, de Silva R, Hardy J (2005) The H1c haplotype at the MAPT locus is associated with Alzheimer’s disease. Hum Mol Genet 14:2399–2404PubMedCrossRefGoogle Scholar
  46. 46.
    Myers AJ, Pittman AM, Zhao AS et al (2007) The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 25:561–570PubMedCrossRefGoogle Scholar
  47. 47.
    Nelson PT, Abner EL, Schmitt FA, Kryscio RJ, Jicha GA, Santacruz K, Smith CD, Patel E, Markesbery WR (2009) Brains with medial temporal lobe neurofibrillary tangles but no neuritic amyloid plaques are a diagnostic dilemma but may have pathogenetic aspects distinct from Alzheimer disease. J Neuropathol Exp Neurol 68:774–784PubMedCrossRefGoogle Scholar
  48. 48.
    Noda K, Sasaki K, Fujimi K, Wakisaka Y, Tanizaki Y, Wakugawa Y, Kiyohara Y, Iida M, Aizawa H, Iwaki T (2006) Quantitative analysis of neurofibrillary pathology in a general population to reappraise neuropathological criteria for senile dementia of the neurofibrillary tangle type (tangle-only dementia): the Hisayama Study. Neuropathology 26:508–518PubMedCrossRefGoogle Scholar
  49. 49.
    Pittman AM, Myers AJ, Abou-Sleiman P et al (2005) Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. J Med Genet 42:837–846PubMedCrossRefGoogle Scholar
  50. 50.
    Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368PubMedCrossRefGoogle Scholar
  51. 51.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCrossRefGoogle Scholar
  52. 52.
    Rowe JW, Kahn RL (1987) Human aging: usual and successful. Science 237:143–149PubMedCrossRefGoogle Scholar
  53. 53.
    Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472PubMedCrossRefGoogle Scholar
  54. 54.
    Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C (2009) Age, neuropathology, and dementia. N Engl J Med 360:2302–2309PubMedCrossRefGoogle Scholar
  55. 55.
    Schmidt SD, Jiang Y, Nixon RA, Mathews PM (2005) Tissue processing prior to protein analysis and amyloid-beta quantitation. Methods Mol Biol 299:267–278PubMedGoogle Scholar
  56. 56.
    Stefansson H, Helgason A, Thorleifsson G et al (2005) A common inversion under selection in Europeans. Nat Genet 37:129–137PubMedCrossRefGoogle Scholar
  57. 57.
    Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24:7707–7717PubMedCrossRefGoogle Scholar
  58. 58.
    Takahashi M, Weidenheim KM, Dickson DW, Ksiezak-Reding H (2002) Morphological and biochemical correlations of abnormal tau filaments in progressive supranuclear palsy. J Neuropathol Exp Neurol 61:33–45PubMedGoogle Scholar
  59. 59.
    Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283:29615–29619PubMedCrossRefGoogle Scholar
  60. 60.
    Trojanowski JQ, Vandeerstichele H, Korecka M et al (2010) Update on the biomarker core of the Alzheimer’s disease neuroimaging initiative subjects. Alzheimer’s Dement J Alzheimer’s Assoc 6:230–238Google Scholar
  61. 61.
    Ulrich J, Spillantini M, Goedert M, Dukas L, Staehelin H (1992) Abundant neurofibrillary tangles without senile plaques in a subset of patients with senile dementia. Neurodegeneration 1:257–284Google Scholar
  62. 62.
    Vandrovcova J, Anaya F, Kay V, Lees A, Hardy J, de Silva R (2010) Disentangling the role of the tau gene locus in sporadic tauopathies. Curr Alzheimer Res 7:726–734PubMedCrossRefGoogle Scholar
  63. 63.
    Walsh DM, Selkoe DJ (2007) A beta oligomers—a decade of discovery. J Neurochem 101:1172–1184PubMedCrossRefGoogle Scholar
  64. 64.
    Wu G, Sankaranarayanan S, Hsieh SH, Simon AJ, Savage MJ (2011) Decrease in brain soluble amyloid precursor protein beta (sAPPbeta) in Alzheimer’s disease cortex. J Neurosci Res 89:822–832PubMedCrossRefGoogle Scholar
  65. 65.
    Yamada M (2003) Senile dementia of the neurofibrillary tangle type (tangle-only dementia): neuropathological criteria and clinical guidelines for diagnosis. Neuropathology 23:311–317PubMedCrossRefGoogle Scholar
  66. 66.
    Yamada M, Itoh Y, Sodeyama N, Suematsu N, Otomo E, Matsushita M, Mizusawa H (2001) Senile dementia of the neurofibrillary tangle type: a comparison with Alzheimer’s disease. Dement Geriatr Cogn Disord 12:117–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ismael Santa-Maria
    • 1
  • Aya Haggiagi
    • 1
  • Xinmin Liu
    • 1
  • Jessica Wasserscheid
    • 2
  • Peter T. Nelson
    • 3
  • Ken Dewar
    • 2
  • Lorraine N. Clark
    • 1
  • John F. Crary
    • 1
    • 4
  1. 1.Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging BrainColumbia UniversityNew YorkUSA
  2. 2.Department of Human GeneticsMcGill UniversityMontrealCanada
  3. 3.Division of Neuropathology, Department of Pathology, Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA
  4. 4.Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations