Acta Neuropathologica

, Volume 123, Issue 6, pp 861–872 | Cite as

Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss

  • Julien Ratelade
  • Hua Zhang
  • Samira Saadoun
  • Jeffrey L. Bennett
  • Marios C. Papadopoulos
  • A. S. VerkmanEmail author
Original Paper


The pathogenesis of neuromyelitis optica (NMO) involves targeting of NMO-immunoglobulin G (NMO-IgG) to aquaporin-4 (AQP4) on astrocytes in the central nervous system. Prior work provided evidence for complement-dependent cytotoxicity (CDC) in NMO lesion development. Here, we show that antibody-dependent cellular cytotoxicity (ADCC), in the absence of complement, can also produce NMO-like lesions. Antibody-dependent cellular cytotoxicity was produced in vitro by incubation of mouse astrocyte cultures with human recombinant monoclonal NMO-IgG and human natural killer cells (NK-cells). Injection of NMO-IgG and NK-cells in mouse brain caused loss of AQP4 and GFAP, two characteristic features of NMO lesions, but little myelin loss. Lesions were minimal or absent following injection of: (1) control (non-NMO) IgG with NK-cells; (2) NMO-IgG and NK-cells in AQP4-deficient mice; or (3) NMO-IgG and NK-cells in wild-type mice together with an excess of mutated NMO-IgG lacking ADCC effector function. NK-cells greatly exacerbated NMO lesions produced by NMO-IgG and complement in an ex vivo spinal cord slice model of NMO, causing marked myelin loss. NMO-IgG can thus produce astrocyte injury by ADCC in a complement-independent and dependent manner, suggesting the potential involvement of ADCC in NMO pathogenesis.


NMO Aquaporin Natural killer cell Astrocyte Demyelination 



This work was supported by grants from the Guthy-Jackson Charitable Foundation (ASV, MCP, JLB), Grants EY13574, EB00415, DK35124, HL73856, DK86125 and DK72517 from the National Institutes of Health (ASV) and grant RG4320 from the National Multiple Sclerosis Society (JLB).


  1. 1.
    Alderson KL, Sondel PM (2011) Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011:379123PubMedCrossRefGoogle Scholar
  2. 2.
    Becknell B, Caligiuri MA (2008) Natural killer cells in innate immunity and cancer. J Immunother 31(8):685–692PubMedCrossRefGoogle Scholar
  3. 3.
    Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, Glogowska M, Case D, Antel JP, Owens GP, Gilden D, Nessler S, Stadelmann C, Hemmer B (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66(5):617–629PubMedCrossRefGoogle Scholar
  4. 4.
    Burgoon MP, Williamson RA, Owens GP, Ghausi O, Bastidas RB, Burton DR, Gilden DH (1999) Cloning the antibody response in humans with inflammatory CNS disease: isolation of measles virus-specific antibodies from phage display libraries of a subacute sclerosing panencephalitis brain. J Neuroimmunol 94(1–2):204–211PubMedCrossRefGoogle Scholar
  5. 5.
    Capel PJ, van de Winkel JG, van den Herik-Oudijk IE, Verbeek JS (1994) Heterogeneity of human IgG Fc receptors. Immunomethods 4(1):25–34PubMedCrossRefGoogle Scholar
  6. 6.
    Chiorean EG, Miller JS (2001) The biology of natural killer cells and implications for therapy of human disease. J Hematother Stem Cell Res 10(4):451–463PubMedCrossRefGoogle Scholar
  7. 7.
    Crane JM, Verkman AS (2009) Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging. J Cell Sci 122(Pt 6):813–821PubMedCrossRefGoogle Scholar
  8. 8.
    Diamond B, Huerta PT, Mina-Osorio P, Kowal C, Volpe BT (2009) Losing your nerves? Maybe it’s the antibodies. Nat Rev Immunol 9(6):449–456PubMedCrossRefGoogle Scholar
  9. 9.
    Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108(Pt 9):2993–3002PubMedGoogle Scholar
  10. 10.
    Hinson SR, McKeon A, Fryer JP, Apiwattanakul M, Lennon VA, Pittock SJ (2009) Prediction of neuromyelitis optica attack severity by quantitation of complement-mediated injury to aquaporin-4-expressing cells. Arch Neurol 66(9):1164–1167PubMedCrossRefGoogle Scholar
  11. 11.
    Hinson SR, McKeon A, Lennon VA (2010) Neurological autoimmunity targeting aquaporin-4. Neuroscience 168(4):1009–1018PubMedCrossRefGoogle Scholar
  12. 12.
    Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, Lennon VA (2007) Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69(24):2221–2231PubMedCrossRefGoogle Scholar
  13. 13.
    Hubert P, Heitzmann A, Viel S, Nicolas A, Sastre-Garau X, Oppezzo P, Pritsch O, Osinaga E, Amigorena S (2011) Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer Res 71(15):5134–5143PubMedCrossRefGoogle Scholar
  14. 14.
    Jarius S, Wildemann B (2010) AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 6(7):383–392PubMedCrossRefGoogle Scholar
  15. 15.
    Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202(4):473–477PubMedCrossRefGoogle Scholar
  16. 16.
    Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364(9451):2106–2112PubMedCrossRefGoogle Scholar
  17. 17.
    Li L, Zhang H, Varrin-Doyer M, Zamvil SS, Verkman AS (2011) Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J 25(5):1556–1566PubMedCrossRefGoogle Scholar
  18. 18.
    Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125(Pt 7):1450–1461PubMedCrossRefGoogle Scholar
  19. 19.
    Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100(5):957–962PubMedCrossRefGoogle Scholar
  20. 20.
    Makrides SC (1998) Therapeutic inhibition of the complement system. Pharmacol Rev 50(1):59–87PubMedGoogle Scholar
  21. 21.
    Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6(2):159–163PubMedCrossRefGoogle Scholar
  22. 22.
    Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, Takahashi T, Nakashima I, Takahashi H, Itoyama Y (2007) Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 130(Pt 5):1224–1234PubMedCrossRefGoogle Scholar
  23. 23.
    Nicchia GP, Mastrototaro M, Rossi A, Pisani F, Tortorella C, Ruggieri M, Lia A, Trojano M, Frigeri A, Svelto M (2009) Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia 57(13):1363–1373PubMedCrossRefGoogle Scholar
  24. 24.
    Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17(1):171–180PubMedGoogle Scholar
  25. 25.
    Phuan PW, Ratelade J, Rossi A, Tradtrantip L, Verkman AS (2012) Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 assembly in orthogonal arrays. J Biol Chem 287:13829–13839Google Scholar
  26. 26.
    Ramos OF, Nilsson B, Nilsson K, Eggertsen G, Yefenof E, Klein E (1989) Elevated NK-mediated lysis of Raji and Daudi cells carrying fixed iC3b fragments. Cell Immunol 119(2):459–469PubMedCrossRefGoogle Scholar
  27. 27.
    Ratelade J, Bennett JL, Verkman AS (2011) Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J Biol Chem 286(52):45156–45164PubMedCrossRefGoogle Scholar
  28. 28.
    Ratelade J, Bennett JL, Verkman AS (2011) Intravenous neuromyelitis optica autoantibody in mice targets aquaporin-4 in peripheral organs and area postrema. PLoS ONE 6(11):e27412PubMedCrossRefGoogle Scholar
  29. 29.
    Robel S, Bardehle S, Lepier A, Brakebusch C, Gotz M (2011) Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment to the injury site in vitro and in vivo. J Neurosci 31(35):12471–12482PubMedCrossRefGoogle Scholar
  30. 30.
    Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, Mandler RN, Weinshenker BG, Pittock SJ, Wingerchuk DM, Lucchinetti CF (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130(Pt 5):1194–1205PubMedCrossRefGoogle Scholar
  31. 31.
    Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133(Pt 2):349–361PubMedCrossRefGoogle Scholar
  32. 32.
    Saadoun S, Waters P, Macdonald C, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2012) Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 71(3):323–333PubMedCrossRefGoogle Scholar
  33. 33.
    Sabater L, Giralt A, Boronat A, Hankiewicz K, Blanco Y, Llufriu S, Alberch J, Graus F, Saiz A (2009) Cytotoxic effect of neuromyelitis optica antibody (NMO-IgG) to astrocytes: an in vitro study. J Neuroimmunol 215(1–2):31–35PubMedCrossRefGoogle Scholar
  34. 34.
    Siders WM, Shields J, Garron C, Hu Y, Boutin P, Shankara S, Weber W, Roberts B, Kaplan JM (2010) Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models. Leuk Lymphoma 51(7):1293–1304PubMedCrossRefGoogle Scholar
  35. 35.
    Singhrao SK, Neal JW, Rushmere NK, Morgan BP, Gasque P (1999) Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest 79(10):1247–1259PubMedGoogle Scholar
  36. 36.
    Tradtrantip L, Zhang H, Anderson MO, Saadoun S, Phuan PW, Papadopoulos MC, Bennett JL, Verkman AS (2012) Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J. doi: 10.1096/fj.11-201608
  37. 37.
    Tradtrantip L, Zhang H, Saadoun S, Phuan PW, Lam C, Papadopoulos MC, Bennett JL, Verkman AS (2012) Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 71(3):314–322PubMedCrossRefGoogle Scholar
  38. 38.
    Ulvestad E, Williams K, Matre R, Nyland H, Olivier A, Antel J (1994) Fc receptors for IgG on cultured human microglia mediate cytotoxicity and phagocytosis of antibody-coated targets. J Neuropathol Exp Neurol 53(1):27–36PubMedCrossRefGoogle Scholar
  39. 39.
    Valerius T, Repp R, Kalden JR, Platzer E (1990) Effects of IFN on human eosinophils in comparison with other cytokines. A novel class of eosinophil activators with delayed onset of action. J Immunol 145(9):2950–2958PubMedGoogle Scholar
  40. 40.
    Vance BA, Huizinga TW, Wardwell K, Guyre PM (1993) Binding of monomeric human IgG defines an expression polymorphism of Fc gamma RIII on large granular lymphocyte/natural killer cells. J Immunol 151(11):6429–6439PubMedGoogle Scholar
  41. 41.
    Verkman AS, Ratelade J, Rossi A, Zhang H, Tradtrantip L (2011) Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica. Acta Pharmacol Sin 32(6):702–710PubMedCrossRefGoogle Scholar
  42. 42.
    Vincent T, Saikali P, Cayrol R, Roth AD, Bar-Or A, Prat A, Antel JP (2008) Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol 181(8):5730–5737PubMedGoogle Scholar
  43. 43.
    Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6(9):805–815PubMedCrossRefGoogle Scholar
  44. 44.
    Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP (1997) A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100(5):1059–1070PubMedCrossRefGoogle Scholar
  45. 45.
    Yanamadala V, Friedlander RM (2010) Complement in neuroprotection and neurodegeneration. Trends Mol Med 16(2):69–76PubMedCrossRefGoogle Scholar
  46. 46.
    Yang C, Jones JL, Barnum SR (1993) Expression of decay-accelerating factor (CD55), membrane cofactor protein (CD46) and CD59 in the human astroglioma cell line, D54-MG, and primary rat astrocytes. J Neuroimmunol 47(2):123–132PubMedCrossRefGoogle Scholar
  47. 47.
    Yusa S, Catina TL, Campbell KS (2002) SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells. J Immunol 168(10):5047–5057PubMedGoogle Scholar
  48. 48.
    Zhang H, Bennett JL, Verkman AS (2011) Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 70(6):943–954PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Julien Ratelade
    • 1
    • 2
  • Hua Zhang
    • 1
    • 2
  • Samira Saadoun
    • 3
  • Jeffrey L. Bennett
    • 4
    • 5
  • Marios C. Papadopoulos
    • 3
  • A. S. Verkman
    • 1
    • 2
    Email author
  1. 1.Department of MedicineUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Academic Neurosurgery UnitSt. George’s University of LondonLondonUK
  4. 4.Department of NeurologyUniversity of Colorado DenverAuroraUSA
  5. 5.Department of OphthalmologyUniversity of Colorado DenverAuroraUSA

Personalised recommendations