Acta Neuropathologica

, Volume 124, Issue 1, pp 23–35

CSF biomarkers cutoffs: the importance of coincident neuropathological diseases

  • Jon B. Toledo
  • Johannes Brettschneider
  • Murray Grossman
  • Steven E. Arnold
  • William T. Hu
  • Sharon X. Xie
  • Virginia M.-Y. Lee
  • Leslie M. Shaw
  • John Q. Trojanowski
Original Paper


The effects of applying clinical versus neuropathological diagnosis and the inclusion of cases with coincident neuropathological diagnoses have not been assessed specifically when studying cerebrospinal fluid (CSF) biomarker classification cutoffs for patients with neurodegenerative diseases that cause dementia. Thus, 142 neuropathologically diagnosed neurodegenerative dementia patients [71 Alzheimer’s disease (AD), 29 frontotemporal lobar degeneration (FTLD), 3 amyotrophic lateral sclerosis, 7 dementia with Lewy bodies, 32 of which cases also had coincident diagnoses] were studied. 96 % had enzyme-linked immunosorbant assay (ELISA) CSF data and 77 % had Luminex CSF data, with 43 and 46 controls for comparison, respectively. Aβ42, total, and phosphorylated tau181 were measured. Clinical and neuropathological diagnoses showed an 81.4 % overall agreement. Both assays showed high sensitivity and specificity to classify AD subjects against FTLD subjects and controls, and moderate sensitivity and specificity for classifying FTLD subjects against controls. However, among the cases with neuropathological diagnoses of AD plus another pathology (26.8 % of the sample), 69.4 % (ELISA) and 96.4 % (Luminex) were classified as AD according to their biomarker profiles. Use of clinical diagnosis instead of neuropathological diagnosis led to a 14–17 % underestimation of the biomarker accuracy. These results show that while CSF Aβ and tau assays are useful for diagnosis of AD and neurodegenerative diseases even at MCI stages, CSF diagnostic analyte panels that establish a positive diagnosis of Lewy body disease and FTLD are also needed, and must be established based on neuropathological rather than clinical diagnoses.


Biomarker Cerebrospinal fluid Alzheimer’s disease Frontotemporal lobar degeneration Amyloid beta Tau 

Supplementary material

401_2012_983_MOESM1_ESM.docx (169 kb)
Supplementary material 1 (DOCX 168 kb)


  1. 1.
    Acosta-Baena N, Sepulveda-Falla D, Lopera-Gomez CM et al (2011) Pre-dementia clinical stages in presenilin 1 E280A familial early-onset Alzheimer’s disease: a retrospective cohort study. Lancet neurology 10(3):213–220PubMedCrossRefGoogle Scholar
  2. 2.
    Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279PubMedCrossRefGoogle Scholar
  3. 3.
    Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und psychisch-gerichtliche Medizin 64 Band, Verlag von Georg ReimerGoogle Scholar
  4. 4.
    Bian H, Van Swieten JC, Leight S et al (2008) CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 70(19 Pt 2):1827–1835PubMedGoogle Scholar
  5. 5.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144PubMedCrossRefGoogle Scholar
  6. 6.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82(4):239–259PubMedCrossRefGoogle Scholar
  7. 7.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404PubMedCrossRefGoogle Scholar
  8. 8.
    Buchhave P, Minthon L, Zetterberg H et al (2012) Cerebrospinal fluid levels of beta-Amyloid 1-42, but not of Tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69(1):98–106PubMedCrossRefGoogle Scholar
  9. 9.
    Clark CM, Xie S, Chittams J et al (2003) Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 60(12):1696–1702PubMedCrossRefGoogle Scholar
  10. 10.
    De Meyer G, Shapiro F, Vanderstichele H et al (2010) Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 67(8):949–956PubMedCrossRefGoogle Scholar
  11. 11.
    Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8):734–746PubMedCrossRefGoogle Scholar
  12. 12.
    Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9(11):1118–1127PubMedCrossRefGoogle Scholar
  13. 13.
    Echavarri C, Caballero MC, Aramendia A, Garcia-Bragado F, Tunon T (2011) Multiprotein deposits in neurodegenerative disorders: our experience in the tissue brain bank of Navarra. Anat Rec (Hoboken) 294(7):1191–1197CrossRefGoogle Scholar
  14. 14.
    Emre M, Aarsland D, Brown R, et al (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22(12):1689–1707 (quiz 1837)Google Scholar
  15. 15.
    Engelborghs S, De Vreese K, Van de Casteele T et al (2008) Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiol Aging 29(8):1143–1159PubMedCrossRefGoogle Scholar
  16. 16.
    Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6(2):67–77PubMedCrossRefGoogle Scholar
  17. 17.
    Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56(1):33–39PubMedCrossRefGoogle Scholar
  18. 18.
    Geser F, Martinez-Lage M, Robinson J et al (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66(2):180–189PubMedCrossRefGoogle Scholar
  19. 19.
    Geser F, Robinson JL, Malunda JA et al (2010) Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Arch Neurol 67(10):1238–1250PubMedCrossRefGoogle Scholar
  20. 20.
    Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76(11):1006–1014PubMedCrossRefGoogle Scholar
  21. 21.
    Grossman M, Farmer J, Leight S et al (2005) Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol 57(5):721–729PubMedCrossRefGoogle Scholar
  22. 22.
    Grossman M, Libon DJ, Forman MS et al (2007) Distinct antemortem profiles in patients with pathologically defined frontotemporal dementia. Arch Neurol 64(11):1601–1609PubMedCrossRefGoogle Scholar
  23. 23.
    Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2006) A Lego system for conditional inference. Am Stat 60(3):257–263CrossRefGoogle Scholar
  24. 24.
    Hu W, Chen-Plotkin A, Arnold S et al (2010) Biomarker discovery for Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease. Acta Neuropathol 120(3):385–399PubMedCrossRefGoogle Scholar
  25. 25.
    Hu WT, Trojanowski JQ and Shaw LM (2011) Biomarkers in frontotemporal lobar degenerations—progress and challenges. Prog Neurobiol (in press, corrected proof)Google Scholar
  26. 26.
    Hyman BT, Trojanowski JQ (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56(10):1095–1097PubMedCrossRefGoogle Scholar
  27. 27.
    Ikonomovic MD, Klunk WE, Abrahamson EE et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131(6):1630–1645PubMedCrossRefGoogle Scholar
  28. 28.
    Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128PubMedCrossRefGoogle Scholar
  29. 29.
    Jack CR Jr, Vemuri P, Wiste HJ et al (2011) Evidence for ordering of Alzheimer disease biomarkers. Arch Neurol 68(12):1526–1535PubMedCrossRefGoogle Scholar
  30. 30.
    Jellinger KA (2008) Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis 5(3–4):118–121PubMedCrossRefGoogle Scholar
  31. 31.
    Jellinger KA, Attems J (2010) Prevalence of dementia disorders in the oldest-old: an autopsy study. Acta Neuropathol 119(4):421–433PubMedCrossRefGoogle Scholar
  32. 32.
    Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42(11):1097–1105PubMedCrossRefGoogle Scholar
  33. 33.
    Kuhn M (2008) Building Predictive Models in R Using the caret. J Stat Softw 28Google Scholar
  34. 34.
    Ling H, O’Sullivan SS, Holton JL et al (2010) Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 133(7):2045–2057PubMedCrossRefGoogle Scholar
  35. 35.
    Lo RY, Hubbard AE, Shaw LM et al (2011) Longitudinal change of biomarkers in cognitive decline. Arch Neurol 68(10):1257–1266Google Scholar
  36. 36.
    Mackenzie I, Neumann M, Bigio E et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119(1):1–4PubMedCrossRefGoogle Scholar
  37. 37.
    McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12):1863–1872PubMedCrossRefGoogle Scholar
  38. 38.
    McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269PubMedCrossRefGoogle Scholar
  39. 39.
    Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486PubMedCrossRefGoogle Scholar
  40. 40.
    Mollenhauer B, Esselmann H, Trenkwalder C et al (2011) CSF amyloid-beta peptides in neuropathologically diagnosed dementia with Lewy bodies and Alzheimer’s disease. J Alzheimers Dis 24(2):383–391PubMedGoogle Scholar
  41. 41.
    Mollenhauer B, Locascio JJ, Schulz-Schaeffer W et al (2011) alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10(3):230–240PubMedCrossRefGoogle Scholar
  42. 42.
    Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133PubMedCrossRefGoogle Scholar
  43. 43.
    Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117(2):137–149PubMedCrossRefGoogle Scholar
  44. 44.
    Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 357(9251):169s–175sGoogle Scholar
  45. 45.
    Nordberg A, Rinne JO, Kadir A, Langstrom B (2010) The use of PET in Alzheimer disease. Nat Rev Neurol 6(2):78–87PubMedCrossRefGoogle Scholar
  46. 46.
    Olsson A, Vanderstichele H, Andreasen N et al (2005) Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 51(2):336–345PubMedCrossRefGoogle Scholar
  47. 47.
    Parnetti L, Chiasserini D, Bellomo G et al (2011) Cerebrospinal fluid tau/α-synuclein ratio in Parkinson’s disease and degenerative dementias. Mov Disord 26(8):1428–1435PubMedCrossRefGoogle Scholar
  48. 48.
    Prvulovic D, Hampel H (2011) Amyloid beta (Abeta) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer’s disease. Clin Chem Lab Med 49(3):367–374PubMedCrossRefGoogle Scholar
  49. 49.
    R Development Core Team (2011) R: a language and environment for statistical computing. In: R Foundation for statistical computing. Vienna, AustriaGoogle Scholar
  50. 50.
    Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(9):2456–2477Google Scholar
  51. 51.
    Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 12:77PubMedCrossRefGoogle Scholar
  52. 52.
    Schneider JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69(24):2197–2204PubMedCrossRefGoogle Scholar
  53. 53.
    Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA (2009) The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 66(2):200–208PubMedCrossRefGoogle Scholar
  54. 54.
    Schoonenboom NS, Reesink FE, Verwey NA et al (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78(1):47–54PubMedCrossRefGoogle Scholar
  55. 55.
    Shaw LM, Korecka M, Clark CM, Lee VMY, Trojanowski JQ (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6(4):295–303PubMedCrossRefGoogle Scholar
  56. 56.
    Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology 65(4):403–413PubMedCrossRefGoogle Scholar
  57. 57.
    Shi M, Bradner J, Hancock AM et al (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69(3):570–580PubMedCrossRefGoogle Scholar
  58. 58.
    Sinha N, Firbank M, O’Brien JT (2011) Biomarkers in dementia with Lewy bodies: a review. Int J Geriatr Psychiatry. doi:10.1002/gps.2749
  59. 59.
    Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66(3):382–389PubMedCrossRefGoogle Scholar
  60. 60.
    Toledo JB, Vanderstichele H, Figurski M et al (2011) Factors affecting Abeta plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol 122(4):401–413PubMedCrossRefGoogle Scholar
  61. 61.
    Urwin H, Josephs KA, Rohrer JD et al (2011) FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol 120(1):33–41CrossRefGoogle Scholar
  62. 62.
    Uryu K, Nakashima-Yasuda H, Forman MS et al (2008) Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67(6):555–564PubMedCrossRefGoogle Scholar
  63. 63.
    van Harten AC, Kester MI, Visser PJ et al (2011) Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med 49(3):353–366PubMedCrossRefGoogle Scholar
  64. 64.
    Vemuri P, Wiste HJ, Weigand SD et al (2010) Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology 75(2):143–151PubMedCrossRefGoogle Scholar
  65. 65.
    Venables WN and Ripley BD (2002). In: Chambers WEJ, Hardle W, Sheather S, Tierney L (eds) Modern applied statistics with S. Springer Verlag, New YorkGoogle Scholar
  66. 66.
    Winton MJ, Lee EB, Sun E et al (2011) Intraneuronal APP, not free Abeta peptides in 3xTg-AD mice: implications for tau versus Abeta-mediated Alzheimer neurodegeneration. J Neurosci 31(21):7691–7699PubMedCrossRefGoogle Scholar
  67. 67.
    Xie SX, Ewbank DC, Chittams J et al (2009) Rate of decline in Alzheimer disease measured by a Dementia Severity Rating Scale. Alzheimer Dis Assoc Disord 23(3):268–274PubMedCrossRefGoogle Scholar
  68. 68.
    Xie SX, Libon DJ, Wang X et al (2010) Longitudinal patterns of semantic and episodic memory in frontotemporal lobar degeneration and Alzheimer’s disease. J Int Neuropsychol Soc 16(2):278–286PubMedCrossRefGoogle Scholar
  69. 69.
    Xie SX, Baek Y, Grossman M et al (2011) Building an integrated neurodegenerative disease database at an academic health center. Alzheimers Dement 7(4):e84–e93PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jon B. Toledo
    • 1
  • Johannes Brettschneider
    • 1
  • Murray Grossman
    • 2
  • Steven E. Arnold
    • 3
  • William T. Hu
    • 4
  • Sharon X. Xie
    • 5
  • Virginia M.-Y. Lee
    • 1
  • Leslie M. Shaw
    • 1
  • John Q. Trojanowski
    • 1
  1. 1.Department of Pathology and Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, CNDRUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Department of NeurologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  3. 3.Department of PsychiatryUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  4. 4.Department of Neurology, Center for Neurodegenerative DiseasesEmory UniversityAtlantaUSA
  5. 5.Department of Biostatistics and EpidemiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations