Acta Neuropathologica

, Volume 123, Issue 4, pp 485–499 | Cite as

Subgroup-specific alternative splicing in medulloblastoma

  • Adrian M. Dubuc
  • A. Sorana Morrissy
  • Nanne K. Kloosterhof
  • Paul A. Northcott
  • Emily P. Y. Yu
  • David Shih
  • John Peacock
  • Wieslawa Grajkowska
  • Timothy van Meter
  • Charles G. Eberhart
  • Stefan Pfister
  • Marco A. Marra
  • William A. Weiss
  • Stephen W. Scherer
  • James T. Rutka
  • Pim J. French
  • Michael D. TaylorEmail author
Original Paper


Medulloblastoma comprises four distinct molecular variants: WNT, SHH, Group 3, and Group 4. We analyzed alternative splicing usage in 14 normal cerebellar samples and 103 medulloblastomas of known subgroup. Medulloblastoma samples have a statistically significant increase in alternative splicing as compared to normal fetal cerebella (2.3-times; P < 6.47E−8). Splicing patterns are distinct and specific between molecular subgroups. Unsupervised hierarchical clustering of alternative splicing events accurately assigns medulloblastomas to their correct subgroup. Subgroup-specific splicing and alternative promoter usage was most prevalent in Group 3 (19.4%) and SHH (16.2%) medulloblastomas, while observed less frequently in WNT (3.2%), and Group 4 (9.3%) tumors. Functional annotation of alternatively spliced genes reveals overrepresentation of genes important for neuronal development. Alternative splicing events in medulloblastoma may be regulated in part by the correlative expression of antisense transcripts, suggesting a possible mechanism affecting subgroup-specific alternative splicing. Our results identify additional candidate markers for medulloblastoma subgroup affiliation, further support the existence of distinct subgroups of the disease, and demonstrate an additional level of transcriptional heterogeneity between medulloblastoma subgroups.


Medulloblastoma Alternative splicing Neuronal development Molecular subgroup Pediatric cancer 

Supplementary material

401_2012_959_MOESM1_ESM.eps (1007 kb)
Supplementary material 1 (EPS 1007 kb)
401_2012_959_MOESM2_ESM.eps (1.8 mb)
Supplementary material 2 (EPS 1807 kb)
401_2012_959_MOESM3_ESM.eps (1.9 mb)
Supplementary material 3 (EPS 1994 kb)
401_2012_959_MOESM4_ESM.eps (4.9 mb)
Supplementary material 4 (EPS 5060 kb)
401_2012_959_MOESM5_ESM.eps (1.7 mb)
Supplementary material 5 (EPS 1785 kb)
401_2012_959_MOESM6_ESM.eps (1.6 mb)
Supplementary material 6 (EPS 1649 kb)
401_2012_959_MOESM7_ESM.eps (2.5 mb)
Supplementary material 7 (EPS 2514 kb)
401_2012_959_MOESM8_ESM.eps (13.7 mb)
Supplementary material 8 (EPS 14064 kb)
401_2012_959_MOESM9_ESM.eps (3.5 mb)
Supplementary material 9 (EPS 3534 kb)
401_2012_959_MOESM10_ESM.eps (9.9 mb)
Supplementary material 10 (EPS 10174 kb)
401_2012_959_MOESM11_ESM.eps (2.1 mb)
Supplementary material 11 (EPS 2122 kb)
401_2012_959_MOESM12_ESM.xlsx (673 kb)
Supplementary material 12 (XLSX 673 kb)


  1. 1.
    Abouantoun TJ, MacDonald TJ (2009) Imatinib blocks migration and invasion of medulloblastoma cells by concurrently inhibiting activation of platelet-derived growth factor receptor and transactivation of epidermal growth factor receptor. Mol Cancer Ther 8(5):1137–1147PubMedCrossRefGoogle Scholar
  2. 2.
    Alló M, Buggiano V, Fededa JP, Petrillo E, Schor I et al (2009) Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol 16(7):717–724PubMedCrossRefGoogle Scholar
  3. 3.
    Bark C, Bellinger FP, Kaushal A, Mathews JR, Partridge LD et al (2004) Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission. J Neurosci 24(40):8796–8805PubMedCrossRefGoogle Scholar
  4. 4.
    Bartel F, Taubert H, Harris LC (2002) Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2(1):9–15PubMedCrossRefGoogle Scholar
  5. 5.
    Bhatia B, Northcott PA, Hambardzumyan D, Govindarajan B, Brat DJ et al (2009) Tuberous sclerosis complex suppression in cerebellar development and medulloblastoma: separate regulation of mammalian target of rapamycin activity and p27 Kip1 localization. Cancer Res 69(18):7224–7234PubMedCrossRefGoogle Scholar
  6. 6.
    Bruinsma SP, Baranski TJ (2007) Beta2-chimaerin in cancer signaling: connecting cell adhesion and MAP kinase activation. Cell Cycle 6(20):2440–2444PubMedCrossRefGoogle Scholar
  7. 7.
    Bueren AO, von Hoff K, Pietsch T, Gerber NU, Warmuth-Metz M et al (2011) Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro Oncol 13(6):669–679CrossRefGoogle Scholar
  8. 8.
    Buonamici S, Williams J, Morrissey M, Wang A, Guo R et al (2010) Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2(51): 51ra70Google Scholar
  9. 9.
    Cho Y-J, Tsherniak A, Tamayo P, Santagata S, Ligon A et al (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29(11):1424–1430PubMedCrossRefGoogle Scholar
  10. 10.
    Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2(10):2366–2382PubMedCrossRefGoogle Scholar
  11. 11.
    David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24(21):2343–2364PubMedCrossRefGoogle Scholar
  12. 12.
    Dubuc AM, Northcott PA, Mack S, Witt H, Pfister S et al (2010) The genetics of pediatric brain tumors. Curr Neurol Neurosci Rep 10(3):215–223PubMedCrossRefGoogle Scholar
  13. 13.
    Eberhart CG (2011) Molecular diagnostics in embryonal brain tumors. Brain Pathol 21(1):96–104PubMedCrossRefGoogle Scholar
  14. 14.
    Ellison DW (2010) Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol 120(3):305–316PubMedCrossRefGoogle Scholar
  15. 15.
    Evans HK, Weidman JR, Cowley DO, Jirtle RL (2005) Comparative phylogenetic analysis of blcap/nnat reveals eutherian-specific imprinted gene. Mol Biol Evol 22(8):1740–1748PubMedCrossRefGoogle Scholar
  16. 16.
    Fan W, Khalid N, Hallahan AR, Olson JM, Zhao LP (2006) A statistical method for predicting splice variants between two groups of samples using GeneChip expression array data. Theor Biol Med Model 3:19PubMedCrossRefGoogle Scholar
  17. 17.
    Ferretti E, Di Marcotullio L, Gessi M, Mattei T, Greco A et al (2006) Alternative splicing of the ErbB-4 cytoplasmic domain and its regulation by hedgehog signaling identify distinct medulloblastoma subsets. Oncogene 25(55):7267–7273PubMedCrossRefGoogle Scholar
  18. 18.
    French PJ, Peeters J, Horsman S, Duijm E, Siccama I et al (2007) Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays. Cancer Res 67(12):5635–5642PubMedCrossRefGoogle Scholar
  19. 19.
    Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q et al (2006) Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 7:325PubMedCrossRefGoogle Scholar
  20. 20.
    Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468(7327):1095–1099PubMedCrossRefGoogle Scholar
  21. 21.
    Gilbertson RJ (2011) Finding the perfect partner for medulloblastoma prognostication. J Clin Oncol 29(29):3841–3842PubMedCrossRefGoogle Scholar
  22. 22.
    Hallahan AR, Pritchard JI, Chandraratna RAS, Ellenbogen RG, Geyer JR et al (2003) BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat Med 9(8):1033–1038PubMedCrossRefGoogle Scholar
  23. 23.
    Hilmi C, Guyot M, Pagès G (2012) VEGF spliced variants: possible role of anti-angiogenesis therapy. J Nucleic Acids 2012:162692PubMedGoogle Scholar
  24. 24.
    Ingham PW (1998) The patched gene in development and cancer. Curr Opin Genet Dev 8(1):88–94PubMedCrossRefGoogle Scholar
  25. 25.
    Kai M, Yasuda S, Imai S-I, Kanoh H, Sakane F (2007) Tyrosine phosphorylation of beta2-chimaerin by Src-family kinase negatively regulates its Rac-specific GAP activity. Biochim Biophys Acta 1773(9):1407–1415PubMedCrossRefGoogle Scholar
  26. 26.
    Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M et al (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566PubMedCrossRefGoogle Scholar
  27. 27.
    Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A et al (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PloS one 3(8):e3088PubMedCrossRefGoogle Scholar
  28. 28.
    Kwan T, Benovoy D, Dias C, Gurd S, Serre D et al (2007) Heritability of alternative splicing in the human genome. Genome Res 17(8):1210–1218PubMedCrossRefGoogle Scholar
  29. 29.
    Leung T, How BE, Manser E, Lim L (1994) Cerebellar beta 2-chimaerin, a GTPase-activating protein for p21 ras-related rac is specifically expressed in granule cells and has a unique N-terminal SH2 domain. J Biol Chem 269(17):12888–12892PubMedGoogle Scholar
  30. 30.
    MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C et al (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29(2):143–152PubMedCrossRefGoogle Scholar
  31. 31.
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449PubMedCrossRefGoogle Scholar
  32. 32.
    Mata MD, Alonso CR, Fededa JP, Pelisch F, Cramer P et al (2003) A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12(2):525–532PubMedCrossRefGoogle Scholar
  33. 33.
    Medrihan L, Rohlmann A, Fairless R, Andrae J, Döring M et al (2009) Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses. J Physiol 587(Pt 21):5095–5106PubMedCrossRefGoogle Scholar
  34. 34.
    Menghi F, Jacques TS, Barenco M, Schwalbe EC, Clifford SC et al (2011) Genome-wide analysis of alternative splicing in medulloblastoma identifies splicing patterns characteristic of normal cerebellar development. Cancer Res 71(6):2045–2055PubMedCrossRefGoogle Scholar
  35. 35.
    Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30(1):13–19PubMedCrossRefGoogle Scholar
  36. 36.
    Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H et al (2009) Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19(10):1825–1835PubMedCrossRefGoogle Scholar
  37. 37.
    Morrissy AS, Griffith M, Marra MA (2011) Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res 21(8):1203–1212PubMedCrossRefGoogle Scholar
  38. 38.
    Nagao K, Togawa N, Fujii K, Uchikawa H, Kohno Y et al (2005) Detecting tissue-specific alternative splicing and disease-associated aberrant splicing of the PTCH gene with exon junction microarrays. Hum Mol Genet 14(22):3379–3388PubMedCrossRefGoogle Scholar
  39. 39.
    Nakajima A, Nishimura K, Nakaima Y, Oh T, Noguchi S et al (2009) Cell type-dependent proapoptotic role of Bcl2L12 revealed by a mutation concomitant with the disruption of the juxtaposed Irf3 gene. Proc Natl Acad Sci USA 106(30):12448–12452PubMedCrossRefGoogle Scholar
  40. 40.
    Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463PubMedCrossRefGoogle Scholar
  41. 41.
    Northcott PA, Fernandez-L A, Hagan JP, Ellison DW, Grajkowska W et al (2009) The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69(8):3249–3255PubMedCrossRefGoogle Scholar
  42. 42.
    Northcott PA, Hielscher T, Dubuc A, Mack S, Shih D et al (2011) Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol 122(2):231–240PubMedCrossRefGoogle Scholar
  43. 43.
    Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414PubMedCrossRefGoogle Scholar
  44. 44.
    Pfaff E, Remke M, Sturm D, Benner A, Witt H et al (2010) TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J Clin Oncol 28(35):5188–5196PubMedCrossRefGoogle Scholar
  45. 45.
    Pfister SM, Korshunov A, Kool M, Hasselblatt M, Eberhart C et al (2010) Molecular diagnostics of CNS embryonal tumors. Acta Neuropathol 120(5):553–566PubMedCrossRefGoogle Scholar
  46. 46.
    Pons S, Trejo JL, Martínez-Morales JR, Martí E (2001) Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128(9):1481–1492PubMedGoogle Scholar
  47. 47.
    Raffel C (2004) Medulloblastoma: molecular genetics and animal models. Neoplasia 6(4):310–322PubMedCrossRefGoogle Scholar
  48. 48.
    Remke M, Hielscher T, Korshunov A, Northcott PA, Bender S et al (2011) FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol 29(29):3852–3861PubMedCrossRefGoogle Scholar
  49. 49.
    Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA et al (2009) Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 361(12):1173–1178PubMedCrossRefGoogle Scholar
  50. 50.
    Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference—a crash course. Trends Genet 21(6):339–345PubMedCrossRefGoogle Scholar
  51. 51.
    Shendure J, Church GM (2002) Computational discovery of sense–antisense transcription in the human and mouse genomes. Genome Biol 3(99): RESEARCH0044Google Scholar
  52. 52.
    Storrs CH, Silverstein SJ (2007) PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. J Virol 81(8):4080–4090PubMedCrossRefGoogle Scholar
  53. 53.
    Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D et al (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24(12):1924–1931PubMedCrossRefGoogle Scholar
  54. 54.
    Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS et al (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12(20 Pt 1):6064–6072PubMedCrossRefGoogle Scholar
  55. 55.
    Tsang WH, Shek KF, Lee TY, Chow KL (2009) An evolutionarily conserved nested gene pair—Mab21 and Lrba/Nbea in metazoan. Genomics 94(3):177–187PubMedCrossRefGoogle Scholar
  56. 56.
    Uchikawa H, Toyoda M, Nagao K, Miyauchi H, Nishikawa R et al (2006) Brain- and heart-specific Patched-1 containing exon 12b is a dominant negative isoform and is expressed in medulloblastomas. Biochem Biophys Res Commun 349(1):277–283PubMedCrossRefGoogle Scholar
  57. 57.
    Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476PubMedCrossRefGoogle Scholar
  58. 58.
    Wang Z, Burge CB (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14(5):802–813PubMedCrossRefGoogle Scholar
  59. 59.
    Ward AJ, Cooper TA (2009) The pathobiology of splicing. J Pathol 220(2):152–163Google Scholar
  60. 60.
    Wei J, Zaika E, Zaika A (2012) p53 family: role of protein isoforms in human cancer. J Nucleic Acids 2012:687359PubMedGoogle Scholar
  61. 61.
    Werbowetski-Ogilvie TE, Seyed Sadr M, Jabado N, Angers-Loustau A, Agar NYR et al (2006) Inhibition of medulloblastoma cell invasion by Slit. Oncogene 25(37):5103–5112PubMedGoogle Scholar
  62. 62.
    Xin D, Hu L, Kong X (2008) Alternative promoters influence alternative splicing at the genomic level. PloS one 3(6):e2377PubMedCrossRefGoogle Scholar
  63. 63.
    Yang Z-J, Ellis T, Markant SL, Read T-A, Kessler JD et al (2008) Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14(2):135–145PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang C, Li H-R, Fan J-B, Wang-Rodriguez J, Downs T et al (2006) Profiling alternatively spliced mRNA isoforms for prostate cancer classification. BMC Bioinforma 7:202CrossRefGoogle Scholar
  65. 65.
    Zhu H, Lo H-W (2010) The human glioma-associated oncogene homolog 1 (GLI1) family of transcription factors in gene regulation and diseases. Curr Genomics 11(4):238–245PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Adrian M. Dubuc
    • 1
    • 2
    • 3
  • A. Sorana Morrissy
    • 1
    • 2
  • Nanne K. Kloosterhof
    • 4
    • 5
  • Paul A. Northcott
    • 1
    • 2
    • 3
  • Emily P. Y. Yu
    • 6
  • David Shih
    • 1
    • 2
    • 3
  • John Peacock
    • 1
    • 2
    • 3
  • Wieslawa Grajkowska
    • 7
  • Timothy van Meter
    • 8
  • Charles G. Eberhart
    • 9
  • Stefan Pfister
    • 10
  • Marco A. Marra
    • 11
  • William A. Weiss
    • 12
  • Stephen W. Scherer
    • 13
    • 14
  • James T. Rutka
    • 1
    • 3
  • Pim J. French
    • 4
  • Michael D. Taylor
    • 1
    • 2
    • 3
    Email author
  1. 1.Division of NeurosurgeryArthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick ChildrenTorontoCanada
  2. 2.Program in Developmental and Stem Cell BiologyThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  4. 4.Department of NeurologyErasmus MCRotterdamThe Netherlands
  5. 5.Department of Paediatric Oncology and HematologyErasmus MC, Sophia Children’s HospitalRotterdamThe Netherlands
  6. 6.Program in Biology and PharmacologyUniversity of Western OntarioLondonCanada
  7. 7.Department of PathologyChildren’s Memorial Health InstituteWarsawPoland
  8. 8.Department of NeurosurgeryMedical College of VirginiaRichmondUSA
  9. 9.Department of PathologyJohns Hopkins UniversityBaltimoreUSA
  10. 10.German Cancer Research CentreUniversity of HeidelbergHeidelbergGermany
  11. 11.British Columbia Cancer AgencyGenome Science CentreVancouverCanada
  12. 12.Helen Diller Family Comprehensive Cancer CentreUniversity of CaliforniaSan FranciscoUSA
  13. 13.The Centre for Applied GenomicsThe Hospital for Sick ChildrenTorontoCanada
  14. 14.Department of Molecular GeneticsUniversity of TorontoTorontoCanada

Personalised recommendations