Advertisement

Acta Neuropathologica

, Volume 124, Issue 1, pp 111–126 | Cite as

Persistent retroviral infection with MoMuLV influences neuropathological signature and phenotype of prion disease

  • Susanne Krasemann
  • Melanie Neumann
  • Jan-Paul Luepke
  • Juliane Grashorn
  • Steffanie Wurr
  • Carol Stocking
  • Markus Glatzel
Original Paper

Abstract

A fundamental step in pathophysiology of prion diseases is the conversion of the host encoded prion protein (PrPC) into a misfolded isoform (PrPSc) that accumulates mainly in neuronal but also non-neuronal tissues. Prion diseases are transmissible within and between species. In a subset of prion diseases, peripheral prion uptake and subsequent transport to the central nervous system are key to disease initiation. The involvement of retroviruses in this process has been postulated based on the findings that retroviral infections enhance the spread of prion infectivity and PrPSc from cell to cell in vitro. To study whether retroviral infection influences the phenotype of prion disease or the spread of prion infectivity and PrPSc in vivo, we developed a murine model with persistent Moloney murine leukemia retrovirus (MoMuLV) infection with and without additional prion infection. We investigated the pathophysiology of prion disease in MoMuLV and prion-infected mice, monitoring temporal kinetics of PrPSc spread and prion infectivity, as well as clinical presentation. Unexpectedly, infection of MoMuLV challenged mice with prions did not change incubation time to clinical prion disease. However, clinical presentation of prion disease was altered in mice infected with both pathogens. This was paralleled by remarkably enhanced astrogliosis and pathognomonic astrocyte morphology in the brain of these mice. Therefore, we conclude that persistent viral infection might act as a disease modifier in prion disease.

Keywords

Prion disease Prions MoMuLV Retrovirus Neuropathological signature Disease phenotype Dementia 

Notes

Acknowledgments

We thank U. Mueller, S. Deutsch, and the mouse pathology core facility of the UKE for technical assistance. This work is supported by grants of the Deutsche Forschungsgemeinschaft (FOR885 and GRK1459 to M.G.), the Landesexzellenzinitiative of Hamburg (SDI-LEXI) to M.G. and a pro-exzellenzia grant (city of Hamburg) and the BMBF-grant 01GZ0712 to S.K.

Supplementary material

401_2012_944_MOESM1_ESM.pdf (20.8 mb)
Supplementary material 1 (PDF 21295 kb)

References

  1. 1.
    Aguzzi A (2004) Understanding the diversity of prions. Nat Cell Biol 6(4):290–292PubMedCrossRefGoogle Scholar
  2. 2.
    Aguzzi A, Raeber A, Blattler T, Flechsig E, Klein M, Weissmann C, Brandner S (1997) Neurotoxicity and neuroinvasiveness of prions. J Neurovirol 3(Suppl 1):S23–S24PubMedGoogle Scholar
  3. 3.
    Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–615PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson GW, Palmer GA, Rowland RR, Even C, Plagemann PG (1995) Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus. J Virol 69(1):308–319PubMedGoogle Scholar
  5. 5.
    Balkema-Buschmann A, Eiden M, Hoffmann C, Kaatz M, Ziegler U, Keller M, Groschup MH (2011) BSE infectivity in the absence of detectable PrP(Sc) accumulation in the tongue and nasal mucosa of terminally diseased cattle. J Gen Virol 92(Pt 2):467–476PubMedCrossRefGoogle Scholar
  6. 6.
    Barron RM, Campbell SL, King D, Bellon A, Chapman KE, Williamson RA, Manson JC (2007) High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem 282(49):35878–35886PubMedCrossRefGoogle Scholar
  7. 7.
    Bofill M, Akbar AN, Amlot PL (2000) Follicular dendritic cells share a membrane-bound protein with fibroblasts. J Pathol 191(2):217–226PubMedCrossRefGoogle Scholar
  8. 8.
    Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379(6563):339–343PubMedCrossRefGoogle Scholar
  9. 9.
    Brandner S, Klein MA, Frigg R, Pekarik V, Parizek P, Raeber A, Glatzel M, Schwarz P, Rulicke T, Weissmann C, Aguzzi A (2000) Neuroinvasion of prions: insights from mouse models. Exp Physiol 85(6):705–712PubMedCrossRefGoogle Scholar
  10. 10.
    Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H, Morrison WI, Bruce ME (1999) Scrapie replication in lymphoid tissues depends on prion protein- expressing follicular dendritic cells. Nat Med 5(11):1308–1312PubMedCrossRefGoogle Scholar
  11. 11.
    Budka H, Aguzzi A, Brown P, Brucher JM, Bugiani O, Gullotta F, Haltia M, Hauw JJ, Ironside JW, Jellinger K et al (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 5(4):459–466PubMedCrossRefGoogle Scholar
  12. 12.
    Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15(2):102–111PubMedCrossRefGoogle Scholar
  13. 13.
    Carp RI, Meeker HC, Caruso V, Sersen E (1999) Scrapie strain-specific interactions with endogenous murine leukaemia virus. J Gen Virol 80(Pt 1):5–10PubMedGoogle Scholar
  14. 14.
    Caruso P, Burla R, Piersanti S, Cherubini G, Remoli C, Martina Y, Saggio I (2009) Prion expression is activated by adenovirus 5 infection and affects the adenoviral cycle in human cells. Virology 385(2):343–350PubMedCrossRefGoogle Scholar
  15. 15.
    Caughey B, Raymond GJ, Ernst D, Race RE (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65(12):6597–6603PubMedGoogle Scholar
  16. 16.
    Chesebro B, Britt W, Evans L, Wehrly K, Nishio J, Cloyd M (1983) Characterization of monoclonal antibodies reactive with murine leukemia viruses: use in analysis of strains of friend MCF and friend ecotropic murine leukemia virus. Virology 127(1):134–148PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB (1994) Structural clues to prion replication. Science 264(5158):530–531PubMedCrossRefGoogle Scholar
  18. 18.
    Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383(6602):685–690PubMedCrossRefGoogle Scholar
  19. 19.
    Fischer M, Rülicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15(6):1255–1264PubMedGoogle Scholar
  20. 20.
    Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8(3):449–457PubMedCrossRefGoogle Scholar
  21. 21.
    Glatzel M, Abela E, Maissen M, Aguzzi A (2003) Extraneural pathologic prion protein in sporadic Creutzfeldt–Jakob disease. N Engl J Med 349(19):1812–1820PubMedCrossRefGoogle Scholar
  22. 22.
    Glatzel M, Brandner S, Klein MA, Aguzzi A (2001) Prions: from neurografts to neuroinvasion. Methods Mol Med 59:129–147. doi: 10.1385/1-59259-134-5:129 PubMedGoogle Scholar
  23. 23.
    Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14(1):29–41PubMedCrossRefGoogle Scholar
  24. 24.
    Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336PubMedCrossRefGoogle Scholar
  25. 25.
    Gousset K, Zurzolo C (2009) Tunnelling nanotubes: a highway for prion spreading? Prion 3(2):94–98PubMedCrossRefGoogle Scholar
  26. 26.
    Greenwood AD, Vincendeau M, Schmadicke AC, Montag J, Seifarth W, Motzkus D (2011) Bovine spongiform encephalopathy infection alters endogenous retrovirus expression in distinct brain regions of cynomolgus macaques (Macaca fascicularis). Mol Neurodegener 6(1):44PubMedCrossRefGoogle Scholar
  27. 27.
    Harbers K, Schnieke A, Stuhlmann H, Jahner D, Jaenisch R (1981) DNA methylation and gene expression: endogenous retroviral genome becomes infectious after molecular cloning. Proc Natl Acad Sci USA 78(12):7609–7613PubMedCrossRefGoogle Scholar
  28. 28.
    Haybaeck J, Heikenwalder M, Klevenz B, Schwarz P, Margalith I, Bridel C, Mertz K, Zirdum E, Petsch B, Fuchs TJ, Stitz L, Aguzzi A (2011) Aerosols transmit prions to immunocompetent and immunodeficient mice. PLoS Pathog 7(1):e1001257PubMedCrossRefGoogle Scholar
  29. 29.
    Herzog C, Sales N, Etchegaray N, Charbonnier A, Freire S, Dormont D, Deslys JP, Lasmezas CI (2004) Tissue distribution of bovine spongiform encephalopathy agent in primates after intravenous or oral infection. Lancet 363(9407):422–428PubMedCrossRefGoogle Scholar
  30. 30.
    Horiuchi M, Caughey B (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J 18(12):3193–3203PubMedCrossRefGoogle Scholar
  31. 31.
    Ironside JW, Head MW (2004) Variant Creutzfeldt–Jakob disease: risk of transmission by blood and blood products. Haemophilia 10(Suppl 4):64–69PubMedCrossRefGoogle Scholar
  32. 32.
    Ironside JW, Ritchie DL, Head MW (2005) Phenotypic variability in human prion diseases. Neuropathol Appl Neurobiol 31(6):565–579PubMedCrossRefGoogle Scholar
  33. 33.
    Jeong BH, Lee YJ, Carp RI, Kim YS (2010) The prevalence of human endogenous retroviruses in cerebrospinal fluids from patients with sporadic Creutzfeldt–Jakob disease. J Clin Virol 47(2):136–142PubMedCrossRefGoogle Scholar
  34. 34.
    Kadowaki T, Nakadate K, Sakakibara S, Hirata K, Ueda S (2007) Expression of Iba1 protein in microglial cells of zitter mutant rat. Neurosci Lett 411(1):26–31PubMedCrossRefGoogle Scholar
  35. 35.
    Kranich J, Krautler NJ, Heinen E, Polymenidou M, Bridel C, Schildknecht A, Huber C, Kosco-Vilbois MH, Zinkernagel R, Miele G, Aguzzi A (2008) Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J Exp Med 205(6):1293–1302PubMedCrossRefGoogle Scholar
  36. 36.
    Krasemann S, Neumann M, Geissen M, Bodemer W, Kaup FJ, Schulz-Schaeffer W, Morel N, Aguzzi A, Glatzel M (2010) Preclinical deposition of pathological prion protein in muscle of experimentally infected primates. PLoS ONE 5(11):e13906PubMedCrossRefGoogle Scholar
  37. 37.
    Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122(1):1–5PubMedGoogle Scholar
  38. 38.
    Kuang X, Scofield VL, Yan M, Stoica G, Liu N, Wong PK (2009) Attenuation of oxidative stress, inflammation and apoptosis by minocycline prevents retrovirus-induced neurodegeneration in mice. Brain Res 1286:174–184PubMedCrossRefGoogle Scholar
  39. 39.
    Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G, Darlix JL (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25(12):2674–2685PubMedCrossRefGoogle Scholar
  40. 40.
    Leblanc P, Baas D, Darlix JL (2004) Analysis of the interactions between HIV-1 and the cellular prion protein in a human cell line. J Mol Biol 337(4):1035–1051PubMedCrossRefGoogle Scholar
  41. 41.
    Lee IY, Choe J (2003) Human follicular dendritic cells and fibroblasts share the 3C8 antigen. Biochem Biophys Res Commun 304(4):701–707PubMedCrossRefGoogle Scholar
  42. 42.
    Lee KH, Jeong BH, Jin JK, Meeker HC, Kim JI, Carp RI, Kim YS (2006) Scrapie infection activates the replication of ecotropic, xenotropic, and polytropic murine leukemia virus (MuLV) in brains and spinal cords of senescence-accelerated mice: implication of MuLV in progression of scrapie pathogenesis. Biochem Biophys Res Commun 349(1):122–130PubMedCrossRefGoogle Scholar
  43. 43.
    Legname G, Nguyen HO, Baskakov IV, Cohen FE, Dearmond SJ, Prusiner SB (2005) Strain-specified characteristics of mouse synthetic prions. Proc Natl Acad Sci USA 102(6):2168–2173PubMedCrossRefGoogle Scholar
  44. 44.
    Li Y, Cardona SM, Traister RS, Lynch WP (2011) Retrovirus-induced spongiform neurodegeneration is mediated by unique central nervous system viral targeting and expression of env alone. J Virol 85(5):2060–2078PubMedCrossRefGoogle Scholar
  45. 45.
    Ligios C, Cancedda MG, Carta A, Santucciu C, Maestrale C, Demontis F, Saba M, Patta C, DeMartini JC, Aguzzi A, Sigurdson CJ (2011) Sheep with scrapie and mastitis transmit infectious prions through the milk. J Virol 85(2):1136–1139PubMedCrossRefGoogle Scholar
  46. 46.
    Ligios C, Sigurdson CJ, Santucciu C, Carcassola G, Manco G, Basagni M, Maestrale C, Cancedda MG, Madau L, Aguzzi A (2005) PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nat Med 11(11):1137–1138PubMedCrossRefGoogle Scholar
  47. 47.
    Liu XH, Xu W, Russ J, Eiden LE, Eiden MV (2011) The host range of gammaretroviruses and gammaretroviral vectors includes post-mitotic neural cells. PLoS One 6(3):e18072PubMedCrossRefGoogle Scholar
  48. 48.
    Lotscher M, Recher M, Lang KS, Navarini A, Hunziker L, Santimaria R, Glatzel M, Schwarz P, Boni J, Zinkernagel RM (2007) Induced prion protein controls immune-activated retroviruses in the mouse spleen. PLoS One 2(11):e1158PubMedCrossRefGoogle Scholar
  49. 49.
    Lynch WP, Snyder EY, Qualtiere L, Portis JL, Sharpe AH (1996) Late virus replication events in microglia are required for neurovirulent retrovirus-induced spongiform neurodegeneration: evidence from neural progenitor-derived chimeric mouse brains. J Virol 70(12):8896–8907PubMedGoogle Scholar
  50. 50.
    Mabbott N, Turner M (2005) Prions and the blood and immune systems. Haematologica 90(4):542–548PubMedGoogle Scholar
  51. 51.
    Magalhaes AC, Baron GS, Lee KS, Steele-Mortimer O, Dorward D, Prado MA, Caughey B (2005) Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci 25(21):5207–5216PubMedCrossRefGoogle Scholar
  52. 52.
    Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302(5646):871–874PubMedCrossRefGoogle Scholar
  53. 53.
    Mead S, Poulter M, Uphill J, Beck J, Whitfield J, Webb TE, Campbell T, Adamson G, Deriziotis P, Tabrizi SJ, Hummerich H, Verzilli C, Alpers MP, Whittaker JC, Collinge J (2009) Genetic risk factors for variant Creutzfeldt–Jakob disease: a genome-wide association study. Lancet Neurol 8(1):57–66PubMedCrossRefGoogle Scholar
  54. 54.
    Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A, Weissmann C (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288(5469):1257–1259PubMedCrossRefGoogle Scholar
  55. 55.
    Munk C, Lohler J, Prassolov V, Just U, Stockschlader M, Stocking C (1997) Amphotropic murine leukemia viruses induce spongiform encephalomyelopathy. Proc Natl Acad Sci USA 94(11):5837–5842PubMedCrossRefGoogle Scholar
  56. 56.
    Neumann M (2009) Phenotypic heterogeneity and genetic modifiers in prion disease caused by a Pro102Leu mutation in the PRNP gene. Nat Clin Pract Neurol 5(2):68–69PubMedCrossRefGoogle Scholar
  57. 57.
    Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H, Kopp N, Piccardo P, Poser S, Rojiani A, Streichemberger N, Julien J, Vital C, Ghetti B, Gambetti P, Kretzschmar H (1999) Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46(2):224–233PubMedCrossRefGoogle Scholar
  58. 58.
    Parchi P, Strammiello R, Giese A, Kretzschmar H (2011) Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol 121(1):91–112PubMedCrossRefGoogle Scholar
  59. 59.
    Pollak L, Shabazov E, Mendlovic S, Rabey MJ (2008) Herpes simplex encephalitis as an initial presentation of Creutzfeldt-Jakob disease. Isr Med Assoc J 10(5):392–394PubMedGoogle Scholar
  60. 60.
    Polymenidou M, Moos R, Scott M, Sigurdson C, Shi YZ, Yajima B, Hafner-Bratkovic I, Jerala R, Hornemann S, Wuthrich K, Bellon A, Vey M, Garen G, James MN, Kav N, Aguzzi A (2008) The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes. PLoS ONE 3(12):e3872PubMedCrossRefGoogle Scholar
  61. 61.
    Portis JL (2001) Genetic determinants of neurovirulence of murine oncornaviruses. Adv Virus Res 56:3–38PubMedCrossRefGoogle Scholar
  62. 62.
    Porto-Carreiro I, Fevrier B, Paquet S, Vilette D, Raposo G (2005) Prions and exosomes: from PrPc trafficking to PrPsc propagation. Blood Cells Mol Dis 35(2):143–148PubMedCrossRefGoogle Scholar
  63. 63.
    Prinz M, Heikenwalder M, Junt T, Schwarz P, Glatzel M, Heppner FL, Fu YX, Lipp M, Aguzzi A (2003) Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425(6961):957–962PubMedCrossRefGoogle Scholar
  64. 64.
    Prinz M, Heikenwalder M, Schwarz P, Takeda K, Akira S, Aguzzi A (2003) Prion pathogenesis in the absence of Toll-like receptor signalling. EMBO Rep 4(2):195–199PubMedCrossRefGoogle Scholar
  65. 65.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144PubMedCrossRefGoogle Scholar
  66. 66.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383PubMedCrossRefGoogle Scholar
  67. 67.
    Raeber AJ, Race RE, Brandner S, Priola SA, Sailer A, Bessen RA, Mucke L, Manson J, Aguzzi A, Oldstone MB, Weissmann C, Chesebro B (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J 16(20):6057–6065PubMedCrossRefGoogle Scholar
  68. 68.
    Roberts TK, Eugenin EA, Morgello S, Clements JE, Zink MC, Berman JW (2010) PrPC, the cellular isoform of the human prion protein, is a novel biomarker of HIV-associated neurocognitive impairment and mediates neuroinflammation. Am J Pathol 177(4):1848–1860PubMedCrossRefGoogle Scholar
  69. 69.
    Rodenburg M, Fischer M, Engelmann A, Harbers SO, Ziegler M, Lohler J, Stocking C (2007) Importance of receptor usage, Fli1 activation, and mouse strain for the stem cell specificity of 10A1 murine leukemia virus leukemogenicity. J Virol 81(2):732–742PubMedCrossRefGoogle Scholar
  70. 70.
    Schoch G, Seeger H, Bogousslavsky J, Tolnay M, Janzer RC, Aguzzi A, Glatzel M (2006) Analysis of prion strains by PrPSc profiling in sporadic Creutzfeldt–Jakob disease. PLoS Med 3(2):e14PubMedCrossRefGoogle Scholar
  71. 71.
    Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C (2002) AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 196(9):1227–1240PubMedCrossRefGoogle Scholar
  72. 72.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35PubMedCrossRefGoogle Scholar
  73. 73.
    Stanton JB, Knowles DP, O’Rourke KI, Herrmann-Hoesing LM, Mathison BA, Baszler TV (2008) Small-ruminant lentivirus enhances PrPSc accumulation in cultured sheep microglial cells. J Virol 82(20):9839–9847PubMedCrossRefGoogle Scholar
  74. 74.
    Stengel A, Bach C, Vorberg I, Frank O, Gilch S, Lutzny G, Seifarth W, Erfle V, Maas E, Schatzl H, Leib-Mosch C, Greenwood AD (2006) Prion infection influences murine endogenous retrovirus expression in neuronal cells. Biochem Biophys Res Commun 343(3):825–831PubMedCrossRefGoogle Scholar
  75. 75.
    Tatzelt J, Maeda N, Pekny M, Yang SL, Betsholtz C, Eliasson C, Cayetano J, Camerino AP, DeArmond SJ, Prusiner SB (1996) Scrapie in mice deficient in apolipoprotein E or glial fibrillary acidic protein. Neurology 47(2):449–453PubMedCrossRefGoogle Scholar
  76. 76.
    Thomzig A, Kratzel C, Lenz G, Kruger D, Beekes M (2003) Widespread PrP(Sc) accumulation in muscles of hamsters orally infected with scrapie. EMBO Rep 4(5):1–4CrossRefGoogle Scholar
  77. 77.
    Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, Laude H, Beringue V (2010) The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 6(4):e1000859PubMedCrossRefGoogle Scholar
  78. 78.
    Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5):582–590PubMedCrossRefGoogle Scholar
  79. 79.
    Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332PubMedCrossRefGoogle Scholar
  80. 80.
    Wadsworth JD, Collinge J (2011) Molecular pathology of human prion disease. Acta Neuropathol 121(1):69–77PubMedCrossRefGoogle Scholar
  81. 81.
    Wadsworth JDF, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, Collinge J (2001) Tissue distribution of protease resistant prion protein in variant CJD using a highly sensitive immuno-blotting assay. Lancet 358:171–180PubMedCrossRefGoogle Scholar
  82. 82.
    Webb TE, Poulter M, Beck J, Uphill J, Adamson G, Campbell T, Linehan J, Powell C, Brandner S, Pal S, Siddique D, Wadsworth JD, Joiner S, Alner K, Petersen C, Hampson S, Rhymes C, Treacy C, Storey E, Geschwind MD, Nemeth AH, Wroe S, Collinge J, Mead S (2008) Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series. Brain 131(Pt 10):2632–2646PubMedCrossRefGoogle Scholar
  83. 83.
    Wong PK, Yuen PH (1994) Cell types in the central nervous system infected by murine retroviruses: implications for the mechanisms of neurodegeneration. Histol Histopathol 9(4):845–858PubMedGoogle Scholar
  84. 84.
    Xue QS, Yang C, Hoffman PM, Streit WJ (2010) Microglial response to murine leukemia virus-induced encephalopathy is a good indicator of neuronal perturbations. Brain Res 1319:131–141PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Susanne Krasemann
    • 1
  • Melanie Neumann
    • 1
  • Jan-Paul Luepke
    • 1
  • Juliane Grashorn
    • 1
  • Steffanie Wurr
    • 1
  • Carol Stocking
    • 2
  • Markus Glatzel
    • 1
  1. 1.Institute of NeuropathologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Heinrich-Pette-InstituteLeibniz Institute for Experimental VirologyHamburgGermany

Personalised recommendations