Acta Neuropathologica

, Volume 123, Issue 2, pp 205–222 | Cite as

Brain metastases: pathobiology and emerging targeted therapies

  • Matthias PreusserEmail author
  • David Capper
  • Aysegül Ilhan-Mutlu
  • Anna Sophie Berghoff
  • Peter Birner
  • Rupert Bartsch
  • Christine Marosi
  • Christoph Zielinski
  • Minesh P. Mehta
  • Frank Winkler
  • Wolfgang Wick
  • Andreas von Deimling


Brain metastases (BM) are common in cancer patients and are associated with high morbidity and poor prognosis, even after intensive multimodal therapy including resection, radiotherapy (stereotactic radiosurgery or whole brain radiotherapy) and chemotherapy. However, advances in the understanding of the pathobiology of BM and the development of molecular targeted agents hold promise for improved prophylaxis and therapy of BM. Here we provide a comprehensive review of the current concepts on mechanisms of the brain-metastatic cascade involving hematogenous dissemination of tumor cells, attachment to microvessel endothelial cells, extravasation into the brain, interaction with the local microenvironment, angiogenesis and intraparenchymal proliferation. Transendothelial migration depends on adhesion molecules such as integrins, selectins and chemokines. Tumor cells invade the brain by degrading extracellular matrix components using heparanase and matrix metalloproteinases. Astrocytes and microglial cells exert not only anti-, but also pro-neoplastic effects on brain-invading tumor cells. Some tumor types (e.g. melanoma) show prominent cooption of preexisting vasculature, while other tumor types (e.g. lung cancer) tend to show early angiogenesis after brain invasion. In this article we also critically summarize the data on currently studied targeted therapeutics in BM especially in the context of recent preclinical data. The most promising agents for BM patients include anti-angiogenic drugs, inhibitors of v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) for BRAF V600E mutated melanoma and inhibitors of epithelial growth factor receptor for non-small cell lung cancer. Molecular analysis of the BRAF V600E status of melanoma BM using DNA-based methods or immunohistochemistry may soon enter the routine neuropathological practice.


Brain metastases Cancer Pathobiology Molecular targets Therapy 



Dr. Preusser acknowledges support by a European Association of Neurooncology (EANO) Fellowship Grant. We thank Mr. Engin Mutlu (DH & Partners Media Group) for help with the preparation of Figures.

Conflict of interest

Andreas von Deimling and David Capper declare shared inventorship of anti- BRAF V600E antibody clone VE1. A patent for diagnostic application of VE1 has been applied for. All terms are being managed by the German Cancer Research Center in accordance with its conflict of interest policies. Minesh Mehta has or has had the following roles in the last 2 years (2010–2011): Consultant: Adnexus, Bayer, Bristol-Meyers-Squibb, Elekta (non-reimbursed), Merck, Novartis, Quark, Tomotherapy; Stock Options: Accuray, Colby, Pharmacyclics, Procertus, Stemina; Data Safety Monitoring Boards: Apogenix; Board of Directors: Pharmacyclics; Medical Advisory Boards: Colby, Stemina, Procertus; Speaker: GRACE Foundation, MCM, Merck, Prime Oncology, Strategic Edge, WebMD; Patents: WARF/Procertus; Royalties: DEMOS Publishers. All other authors do not report potential conflicts of interests.


  1. 1.
    Altavilla G, Arrigo C, Santarpia MC et al (2008) Erlotinib therapy in a patient with non-small-cell lung cancer and brain metastases. J Neurooncol 90:31–33PubMedCrossRefGoogle Scholar
  2. 2.
    Arnold SM, Young AB, Munn RK, Patchell RA, Nanayakkara N, Markesbery WR (1999) Expression of p53, bcl-2, E-cadherin, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 in paired primary tumors and brain metastasis. Clin Cancer Res 5:4028–4033PubMedGoogle Scholar
  3. 3.
    Arrieta O, Saavedra-Perez D, Kuri R et al (2009) Brain metastasis development and poor survival associated with carcinoembryonic antigen (CEA) level in advanced non-small cell lung cancer: a prospective analysis. BMC Cancer 9:119PubMedCrossRefGoogle Scholar
  4. 4.
    Barnhill RL, Benson PJ, Lugassy C (2009) Conspicuous angiotropism of malignant melanoma involving the brain: implications for extravascular migratory metastasis. Am J Dermatopathol 31:205–208PubMedCrossRefGoogle Scholar
  5. 5.
    Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 22:2865–2872PubMedCrossRefGoogle Scholar
  6. 6.
    Barthel SR, Gavino JD, Descheny L, Dimitroff CJ (2007) Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 11:1473–1491PubMedCrossRefGoogle Scholar
  7. 7.
    Benedetti G, Latini L, Galetta D, Colucci G, Crino L (2009) Epidermal growth factor receptor exon 19 deletions predict complete regression of multiple intracranial metastases in two cases of non-small cell lung cancer treated with erlotinib. J Thorac Oncol 4:936–937PubMedCrossRefGoogle Scholar
  8. 8.
    Besse B, Lasserre SF, Compton P, Huang J, Augustus S, Rohr UP (2010) Bevacizumab safety in patients with central nervous system metastases. Clin Cancer Res 16:269–278PubMedCrossRefGoogle Scholar
  9. 9.
    Bonneh-Barkay D, Wiley CA (2009) Brain extracellular matrix in neurodegeneration. Brain Pathol 19:573–585PubMedCrossRefGoogle Scholar
  10. 10.
    Bos PD, Zhang XH, Nadal C et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009PubMedCrossRefGoogle Scholar
  11. 11.
    Brantley EC, Guo L, Zhang C et al (2010) Nitric oxide-mediated tumoricidal activity of murine microglial cells. Transl Oncol 3:380–388PubMedGoogle Scholar
  12. 12.
    Brayton J, Qing Z, Hart MN, VanGilder JC, Fabry Z (1998) Influence of adhesion molecule expression by human brain microvessel endothelium on cancer cell adhesion. J Neuroimmunol 89:104–112PubMedCrossRefGoogle Scholar
  13. 13.
    Burstein HJ, Lieberman G, Slamon DJ, Winer EP, Klein P (2005) Isolated central nervous system metastases in patients with HER2-overexpressing advanced breast cancer treated with first-line trastuzumab-based therapy. Ann Oncol 16:1772–1777PubMedCrossRefGoogle Scholar
  14. 14.
    Cameron D, Casey M, Press M et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112:533–543PubMedCrossRefGoogle Scholar
  15. 15.
    Capper D, Berghoff AS, Magerle M, et al (2011) Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol (in press)Google Scholar
  16. 16.
    Capper D, Preusser M, Habel A et al (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122:11–19PubMedCrossRefGoogle Scholar
  17. 17.
    Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4:e5857PubMedCrossRefGoogle Scholar
  18. 18.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307PubMedCrossRefGoogle Scholar
  19. 19.
    Ceresoli GL, Cappuzzo F, Gregorc V, Bartolini S, Crino L, Villa E (2004) Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Ann Oncol 15:1042–1047PubMedCrossRefGoogle Scholar
  20. 20.
    Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRefGoogle Scholar
  21. 21.
    Chen G, Wang Z, Liu XY, Liu FY (2011) High-level CXCR4 expression correlates with brain-specific metastasis of non-small cell lung cancer. World J Surg 35:56–61PubMedCrossRefGoogle Scholar
  22. 22.
    Chiu CH, Tsai CM, Chen YM, Chiang SC, Liou JL, Perng RP (2005) Gefitinib is active in patients with brain metastases from non-small cell lung cancer and response is related to skin toxicity. Lung Cancer 47:129–138PubMedCrossRefGoogle Scholar
  23. 23.
    Costa DB, Kobayashi S, Pandya SS et al (2011) CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol 29:e443–e445PubMedCrossRefGoogle Scholar
  24. 24.
    Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820PubMedCrossRefGoogle Scholar
  25. 25.
    Cruz-Munoz W, Man S, Xu P, Kerbel RS (2008) Development of a preclinical model of spontaneous human melanoma central nervous system metastasis. Cancer Res 68:4500–4505PubMedCrossRefGoogle Scholar
  26. 26.
    Daginakatte GC, Gianino SM, Zhao NW, Parsadanian AS, Gutmann DH (2008) Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res 68:10358–10366PubMedCrossRefGoogle Scholar
  27. 27.
    Daginakatte GC, Gutmann DH (2007) Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet 16:1098–1112PubMedCrossRefGoogle Scholar
  28. 28.
    De Braganca KC, Janjigian YY, Azzoli CG et al (2010) Efficacy and safety of bevacizumab in active brain metastases from non-small cell lung cancer. J Neurooncol 100:443–447PubMedCrossRefGoogle Scholar
  29. 29.
    de la Monte SM, Moore GW, Hutchins GM (1983) Patterned distribution of metastases from malignant melanoma in humans. Cancer Res 43:3427–3433Google Scholar
  30. 30.
    Demaria S, Kawashima N, Yang AM et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11:728–734PubMedGoogle Scholar
  31. 31.
    Denkins Y, Reiland J, Roy M et al (2004) Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol 6:154–165PubMedCrossRefGoogle Scholar
  32. 32.
    Dome B, Timar J, Paku S (2003) A novel concept of glomeruloid body formation in experimental cerebral metastases. J Neuropathol Exp Neurol 62:655–661PubMedGoogle Scholar
  33. 33.
    Eichler AF, Kahle KT, Wang DL et al (2010) EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol 12:1193–1199PubMedCrossRefGoogle Scholar
  34. 34.
    Fan J, Cai B, Zeng M, Hao Y, Giancotti FG, Fu BM (2011) Integrin beta4 signaling promotes mammary tumor cell adhesion to brain microvascular endothelium by inducing ErbB2-mediated secretion of VEGF. Ann Biomed Eng 39:2223–2241PubMedCrossRefGoogle Scholar
  35. 35.
    Fekrazad MH, Ravindranathan M, Jones DV Jr (2007) Response of intracranial metastases to erlotinib therapy. J Clin Oncol 25:5024–5026PubMedCrossRefGoogle Scholar
  36. 36.
    Felding-Habermann B, O’Toole TE, Smith JW, et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA 98:1853–1858Google Scholar
  37. 37.
    Fidler IJ (2011) The role of the organ microenvironment in brain metastasis. Semin Cancer Biol 21:107–112PubMedCrossRefGoogle Scholar
  38. 38.
    Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3:53–57PubMedCrossRefGoogle Scholar
  39. 39.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200PubMedCrossRefGoogle Scholar
  40. 40.
    Fujimaki T, Price JE, Fan D et al (1996) Selective growth of human melanoma cells in the brain parenchyma of nude mice. Melanoma Res 6:363–371PubMedCrossRefGoogle Scholar
  41. 41.
    Gaedcke J, Traub F, Milde S et al (2007) Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod Pathol 20:864–870PubMedCrossRefGoogle Scholar
  42. 42.
    Gaspar L, Scott C, Rotman M et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37:745–751PubMedCrossRefGoogle Scholar
  43. 43.
    Gordon MS, Margolin K, Talpaz M et al (2001) Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 19:843–850PubMedGoogle Scholar
  44. 44.
    Gore E (2006) Prophylactic cranial irradiation versus observation in stage III non-small-cell lung cancer. Clin Lung Cancer 7:276–278PubMedCrossRefGoogle Scholar
  45. 45.
    Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105PubMedCrossRefGoogle Scholar
  46. 46.
    Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M (2005) CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 24:4462–4471PubMedCrossRefGoogle Scholar
  47. 47.
    Heitz F, Harter P, Lueck HJ et al (2009) Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur J Cancer 45:2792–2798PubMedCrossRefGoogle Scholar
  48. 48.
    Heon S, Yeap BY, Britt GJ et al (2010) Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic EGFR mutations treated with gefitinib or erlotinib. Clin Cancer Res 16:5873–5882PubMedCrossRefGoogle Scholar
  49. 49.
    Hinton CV, Avraham S, Avraham HK (2010) Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis 27:97–105PubMedCrossRefGoogle Scholar
  50. 50.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRefGoogle Scholar
  51. 51.
    Hotta K, Kiura K, Ueoka H et al (2004) Effect of gefitinib (‘Iressa’, ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer. Lung Cancer 46:255–261PubMedCrossRefGoogle Scholar
  52. 52.
    Hubbs JL, Boyd JA, Hollis D, Chino JP, Saynak M, Kelsey CR (2010) Factors associated with the development of brain metastases: analysis of 975 patients with early stage nonsmall cell lung cancer. Cancer 116:5038–5046PubMedCrossRefGoogle Scholar
  53. 53.
    Hwang SY, Yoo BC, Jung JW et al (2009) Induction of glioma apoptosis by microglia-secreted molecules: The role of nitric oxide and cathepsin B. Biochim Biophys Acta 1793:1656–1668PubMedCrossRefGoogle Scholar
  54. 54.
    Ito T, Kitamura H, Nakamura N, Kameda Y, Kanisawa M (1993) A comparative study of vascular proliferation in brain metastasis of lung carcinomas. Virchows Arch A Pathol Anat Histopathol 423:13–17PubMedCrossRefGoogle Scholar
  55. 55.
    Jubb AM, Cesario A, Ferguson M et al (2011) Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases. Br J Cancer 104:1877–1881PubMedCrossRefGoogle Scholar
  56. 56.
    Kamoun WS, Ley CD, Farrar CT et al (2009) Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 27:2542–2552PubMedCrossRefGoogle Scholar
  57. 57.
    Kennecke H, Yerushalmi R, Woods R et al (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277PubMedCrossRefGoogle Scholar
  58. 58.
    Kienast Y, von Baumgarten L, Fuhrmann M et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122PubMedCrossRefGoogle Scholar
  59. 59.
    Kienast Y, Winkler F (2010) Therapy and prophylaxis of brain metastases. Expert Rev Anticancer Ther 10:1763–1777PubMedCrossRefGoogle Scholar
  60. 60.
    Kim JE, Lee DH, Choi Y et al (2009) Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer 65:351–354PubMedCrossRefGoogle Scholar
  61. 61.
    Kim LS, Huang S, Lu W, Lev DC, Price JE (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21:107–118PubMedCrossRefGoogle Scholar
  62. 62.
    Klemm F, Bleckmann A, Siam L et al (2011) beta-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis 32:434–442PubMedCrossRefGoogle Scholar
  63. 63.
    Klos KJ, O’Neill BP (2004) Brain metastases. Neurologist 10:31–46PubMedCrossRefGoogle Scholar
  64. 64.
    Knisely JP, Berkey B, Chakravarti A et al (2008) A phase III study of conventional radiation therapy plus thalidomide versus conventional radiation therapy for multiple brain metastases (RTOG 0118). Int J Radiat Oncol Biol Phys 71:79–86PubMedCrossRefGoogle Scholar
  65. 65.
    Konecny GE, Meng YG, Untch M et al (2004) Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res 10:1706–1716PubMedCrossRefGoogle Scholar
  66. 66.
    Kusters B, Leenders WP, Wesseling P et al (2002) Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62:341–345PubMedGoogle Scholar
  67. 67.
    Kusters B, Westphal JR, Smits D et al (2001) The pattern of metastasis of human melanoma to the central nervous system is not influenced by integrin alpha(v)beta(3) expression. Int J Cancer 92:176–180PubMedCrossRefGoogle Scholar
  68. 68.
    Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703PubMedCrossRefGoogle Scholar
  69. 69.
    Lai CS, Boshoff C, Falzon M, Lee SM (2006) Complete response to erlotinib treatment in brain metastases from recurrent NSCLC. Thorax 61:91PubMedCrossRefGoogle Scholar
  70. 70.
    Langley RR, Fan D, Guo L et al (2009) Generation of an immortalized astrocyte cell line from H-2Kb-tsA58 mice to study the role of astrocytes in brain metastasis. Int J Oncol 35:665–672PubMedCrossRefGoogle Scholar
  71. 71.
    Laubli H, Borsig L (2010) Selectins promote tumor metastasis. Semin Cancer Biol 20:169–177PubMedCrossRefGoogle Scholar
  72. 72.
    Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21:3995–4004PubMedCrossRefGoogle Scholar
  73. 73.
    Lebbe C, McDermott DF, Robert C, Lorigan P, Ottensmeier CH, Wolchok JD (2010) Ipilimumab improves survival in previously treated, advanced melanoma patients with poor prognostic factors: subgroup analysis from a phase III trial. Annals Oncol 21(suppl)Google Scholar
  74. 74.
    Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327–338PubMedGoogle Scholar
  75. 75.
    Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–5284PubMedCrossRefGoogle Scholar
  76. 76.
    Leenders WP, Kusters B, Verrijp K et al (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10:6222–6230PubMedCrossRefGoogle Scholar
  77. 77.
    Li B, Zhao WD, Tan ZM, Fang WG, Zhu L, Chen YH (2006) Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett 580:4252–4260PubMedCrossRefGoogle Scholar
  78. 78.
    Lin NU, Bellon JR, Winer EP (2004) CNS metastases in breast cancer. J Clin Oncol 22:3608–3617PubMedCrossRefGoogle Scholar
  79. 79.
    Lin NU, Carey LA, Liu MC et al (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26:1993–1999PubMedCrossRefGoogle Scholar
  80. 80.
    Lin NU, Dieras V, Paul D et al (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15:1452–1459PubMedCrossRefGoogle Scholar
  81. 81.
    Lin NU, Winer EP (2007) Brain metastases: the HER2 paradigm. Clin Cancer Res 13:1648–1655PubMedCrossRefGoogle Scholar
  82. 82.
    Lin Q, Balasubramanian K, Fan D et al (2010) Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 12:748–754PubMedGoogle Scholar
  83. 83.
    Lind JS, Lagerwaard FJ, Smit EF, Senan S (2009) Phase I study of concurrent whole brain radiotherapy and erlotinib for multiple brain metastases from non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 74:1391–1396PubMedCrossRefGoogle Scholar
  84. 84.
    Liu Y, Carson-Walter EB, Cooper A, Winans BN, Johnson MD, Walter KA (2010) Vascular gene expression patterns are conserved in primary and metastatic brain tumors. J Neurooncol 99:13–24PubMedCrossRefGoogle Scholar
  85. 85.
    Long GV, Kefford RF, Carr PJA et al (2010) Phase 1/2 study of GSK2118436, a selective inhibitor of V600 mutant BRAF kinase: evidence of activity in melanoma brain metastases (LBA27). Ann Oncol 21:viii12Google Scholar
  86. 86.
    Lorger M, Krueger JS, O’Neal M, Staflin K, Felding-Habermann B (2009) Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci USA 106:10666–10671Google Scholar
  87. 87.
    Ma S, Xu Y, Deng Q, Yu X (2009) Treatment of brain metastasis from non-small cell lung cancer with whole brain radiotherapy and Gefitinib in a Chinese population. Lung Cancer 65:198–203PubMedCrossRefGoogle Scholar
  88. 88.
    Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701PubMedCrossRefGoogle Scholar
  89. 89.
    Mammoser AG, Groves MD (2010) Biology and therapy of neoplastic meningitis. Curr Oncol Rep 12:41–49PubMedCrossRefGoogle Scholar
  90. 90.
    Marchetti D, Li J, Shen R (2000) Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res 60:4767–4770PubMedGoogle Scholar
  91. 91.
    Marchetti D, Reiland J, Erwin B, Roy M (2003) Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues. Int J Cancer 104:167–174PubMedCrossRefGoogle Scholar
  92. 92.
    Masuda T, Hattori N, Hamada A et al (2011) Erlotinib efficacy and cerebrospinal fluid concentration in patients with lung adenocarcinoma developing leptomeningeal metastases during gefitinib therapy. Cancer Chemother Pharmacol 67:1465–1469PubMedCrossRefGoogle Scholar
  93. 93.
    Mathews MS, Linskey ME, Hasso AN, Fruehauf JP (2008) The effect of bevacizumab (Avastin) on neuroimaging of brain metastases. Surg Neurol 70:649–652 (discussion 653)Google Scholar
  94. 94.
    McCurley CR, Shivers RR, Del Maestro RF (1998) Quantitative comparison of the morphology of the microvasculature of primary lung lesions and metastatic brain tumours. J Submicrosc Cytol Pathol 30:257–269PubMedGoogle Scholar
  95. 95.
    Mehta MP, Paleologos NA, Mikkelsen T et al (2010) The role of chemotherapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:71–83PubMedCrossRefGoogle Scholar
  96. 96.
    Mendes O, Kim HT, Lungu G, Stoica G (2007) MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clin Exp Metastasis 24:341–351PubMedCrossRefGoogle Scholar
  97. 97.
    Miller KD, Weathers T, Haney LG et al (2003) Occult central nervous system involvement in patients with metastatic breast cancer: prevalence, predictive factors and impact on overall survival. Ann Oncol 14:1072–1077PubMedCrossRefGoogle Scholar
  98. 98.
    Minami CA, Chung DU, Chang HR (2011) Management options in triple-negative breast cancer. Breast Cancer (Auckl) 5:175–199Google Scholar
  99. 99.
    Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8:1008–1013PubMedGoogle Scholar
  100. 100.
    Murakami K, Nawano S, Moriyama N et al (1996) Intracranial metastases of hepatocellular carcinoma: CT and MRI. Neuroradiology 38(Suppl 1):S31–S35PubMedCrossRefGoogle Scholar
  101. 101.
    Murata J, Corradin SB, Janzer RC, Juillerat-Jeanneret L (1994) Tumor cells suppress cytokine-induced nitric-oxide (NO) production in cerebral endothelial cells. Int J Cancer 59:699–705PubMedCrossRefGoogle Scholar
  102. 102.
    Namba Y, Kijima T, Yokota S et al (2004) Gefitinib in patients with brain metastases from non-small-cell lung cancer: review of 15 clinical cases. Clin Lung Cancer 6:123–128PubMedCrossRefGoogle Scholar
  103. 103.
    Narayana A, Kunnakkat SD, Medabalmi P et al (2010) Change in Pattern of Relapse After Antiangiogenic Therapy in High-Grade Glioma. Int J Radiat Oncol Biol physGoogle Scholar
  104. 104.
    Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRefGoogle Scholar
  105. 105.
    Neuwelt EA, Bauer B, Fahlke C et al (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12:169–182PubMedCrossRefGoogle Scholar
  106. 106.
    Neves S, Mazal PR, Wanschitz J et al (2001) Pseudogliomatous growth pattern of anaplastic small cell carcinomas metastatic to the brain. Clin Neuropathol 20:38–42PubMedGoogle Scholar
  107. 107.
    Nguyen DX, Chiang AC, Zhang XH et al (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138:51–62PubMedCrossRefGoogle Scholar
  108. 108.
    Noda M, Seike T, Fujita K, Yamakawa Y, Kido M, Iguchi H (2009) The role of immune cells in brain metastasis of lung cancer cells and neuron-tumor cell interaction. Ross Fiziol Zh Im I M Sechenova 95:1386–1396PubMedGoogle Scholar
  109. 109.
    O’Shaughnessy J, Osborne C, Pippen JE et al (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364:205–214PubMedCrossRefGoogle Scholar
  110. 110.
    Olson JJ, Paleologos NA, Gaspar LE et al (2010) The role of emerging and investigational therapies for metastatic brain tumors: a systematic review and evidence-based clinical practice guideline of selected topics. J Neurooncol 96:115–142PubMedCrossRefGoogle Scholar
  111. 111.
    Oxmann D, Held-Feindt J, Stark AM, Hattermann K, Yoneda T, Mentlein R (2008) Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 27:3567–3575PubMedCrossRefGoogle Scholar
  112. 112.
    Palmieri D, Bronder JL, Herring JM et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67:4190–4198PubMedCrossRefGoogle Scholar
  113. 113.
    Pearson R, Kolesar JM (2011) Targeted therapy for NSCLC: ALK inhibition. J Oncol Pharm Pract (in press)Google Scholar
  114. 114.
    Pestalozzi BC, Zahrieh D, Price KN et al (2006) Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 17:935–944PubMedCrossRefGoogle Scholar
  115. 115.
    Pilones KA, Kawashima N, Yang AM, Babb JS, Formenti SC, Demaria S (2009) Invariant natural killer T cells regulate breast cancer response to radiation and CTLA-4 blockade. Clin Cancer Res 15:597–606PubMedCrossRefGoogle Scholar
  116. 116.
    Porta R, Sanchez-Torres JM, Paz-Ares L et al (2011) Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J 37:624–631PubMedCrossRefGoogle Scholar
  117. 117.
    Preusser M, de Ribaupierre S, Wohrer A et al (2011) Current concepts and management of glioblastoma. Ann Neurol 70:9–21PubMedCrossRefGoogle Scholar
  118. 118.
    Pukrop T, Dehghani F, Chuang HN et al (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58:1477–1489PubMedGoogle Scholar
  119. 119.
    Qian Y, Hua E, Bisht K et al (2011) Inhibition of Polo-like kinase 1 prevents the growth of metastatic breast cancer cells in the brain. Clin Exp Metastasis 28:899–908Google Scholar
  120. 120.
    Quant EC, Wen PY (2011) Response assessment in neuro-oncology. Curr Oncol Rep 13:50–56PubMedCrossRefGoogle Scholar
  121. 121.
    Ridgway LD, Wetzel MD, Marchetti D (2010) Modulation of GEF-H1 induced signaling by heparanase in brain metastatic melanoma cells. J Cell Biochem 111:1299–1309PubMedCrossRefGoogle Scholar
  122. 122.
    Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRefGoogle Scholar
  123. 123.
    Rolland Y, Demeule M, Fenart L, Beliveau R (2009) Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface. Pigment Cell Melanoma Res 22:86–98PubMedCrossRefGoogle Scholar
  124. 124.
    Rozenberg GI, Monahan KB, Torrice C, Bear JE, Sharpless NE (2010) Metastasis in an orthotopic murine model of melanoma is independent of RAS/RAF mutation. Melanoma Res 20:361–371PubMedGoogle Scholar
  125. 125.
    Salgado KB, Toscani NV, Silva LL, Hilbig A, Barbosa-Coutinho LM (2007) Immunoexpression of endoglin in brain metastasis secondary to malignant melanoma: evaluation of angiogenesis and comparison with brain metastasis secondary to breast and lung carcinomas. Clin Exp Metastasis 24:403–410PubMedCrossRefGoogle Scholar
  126. 126.
    Salmaggi A, Maderna E, Calatozzolo C et al (2009) CXCL12, CXCR4 and CXCR7 expression in brain metastases. Cancer Biol Ther 8:1608–1614PubMedCrossRefGoogle Scholar
  127. 127.
    Schackert G, Fidler IJ (1988) Development of in vivo models for studies of brain metastasis. Int J Cancer 41:589–594PubMedCrossRefGoogle Scholar
  128. 128.
    Schackert G, Fidler IJ (1988) Site-specific metastasis of mouse melanomas and a fibrosarcoma in the brain or meninges of syngeneic animals. Cancer Res 48:3478–3484PubMedGoogle Scholar
  129. 129.
    Schackert G, Price JE, Bucana CD, Fidler IJ (1989) Unique patterns of brain metastasis produced by different human carcinomas in athymic nude mice. Int J Cancer 44:892–897PubMedCrossRefGoogle Scholar
  130. 130.
    Schackert G, Price JE, Zhang RD, Bucana CD, Itoh K, Fidler IJ (1990) Regional growth of different human melanomas as metastases in the brain of nude mice. Am J Pathol 136:95–102PubMedGoogle Scholar
  131. 131.
    Schackert G, Simmons RD, Buzbee TM, Hume DA, Fidler IJ (1988) Macrophage infiltration into experimental brain metastases: occurrence through an intact blood-brain barrier. J Natl Cancer Inst 80:1027–1034PubMedCrossRefGoogle Scholar
  132. 132.
    Schartz NE, Farges C, Madelaine I et al (2010) Complete regression of a previously untreated melanoma brain metastasis with ipilimumab. Melanoma Res 20:247–250PubMedGoogle Scholar
  133. 133.
    Schouten LJ, Rutten J, Huveneers HA, Twijnstra A (2002) Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94:2698–2705PubMedCrossRefGoogle Scholar
  134. 134.
    Shonukan O, Bagayogo I, McCrea P, Chao M, Hempstead B (2003) Neurotrophin-induced melanoma cell migration is mediated through the actin-bundling protein fascin. Oncogene 22:3616–3623PubMedCrossRefGoogle Scholar
  135. 135.
    Sierra A, Price JE, Garcia-Ramirez M, Mendez O, Lopez L, Fabra A (1997) Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Invest 77:357–368PubMedGoogle Scholar
  136. 136.
    Souglakos J, Vamvakas L, Apostolaki S et al (2006) Central nervous system relapse in patients with breast cancer is associated with advanced stages, with the presence of circulating occult tumor cells and with the HER2/neu status. Breast Cancer Res 8:R36PubMedCrossRefGoogle Scholar
  137. 137.
    Sperduto PW, Chao ST, Sneed PK et al (2010) Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4, 259 patients. Int J Radiat Oncol Biol Phys 77:655–661PubMedCrossRefGoogle Scholar
  138. 138.
    Stark AM, Anuszkiewicz B, Mentlein R, Yoneda T, Mehdorn HM, Held-Feindt J (2007) Differential expression of matrix metalloproteinases in brain- and bone-seeking clones of metastatic MDA-MB-231 breast cancer cells. J Neurooncol 81:39–48PubMedCrossRefGoogle Scholar
  139. 139.
    Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V (2007) Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs 18:23–28PubMedCrossRefGoogle Scholar
  140. 140.
    Tabatabai G, Tonn JC, Stupp R, Weller M (2011) The role of integrins in glioma biology and anti-glioma therapies. Curr Pharm Des 17:2402–10Google Scholar
  141. 141.
    Taskar KS, Rudraraju V, Mittapalli RK et al (2011) Lapatinib Distribution in HER2 Overexpressing Experimental Brain Metastases of Breast Cancer. Pharm Res (in press)Google Scholar
  142. 142.
    Tester AM, Waltham M, Oh SJ et al (2004) Pro-matrix metalloproteinase-2 transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice. Cancer Res 64:652–658PubMedCrossRefGoogle Scholar
  143. 143.
    Wagle N, Emery C, Berger MF et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096PubMedCrossRefGoogle Scholar
  144. 144.
    Wang X, Li C, Chen Y et al (2008) Hypoxia enhances CXCR4 expression favoring microglia migration via HIF-1alpha activation. Biochem Biophys Res Commun 371:283–288PubMedCrossRefGoogle Scholar
  145. 145.
    Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167:913–920PubMedCrossRefGoogle Scholar
  146. 146.
    Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14PubMedCrossRefGoogle Scholar
  147. 147.
    Welsh J, Amini A, Kim ES et al (2011) Phase II study of erlotinib with concurrent whole-brain radiation therapy for patients with brain metastases from non-small cell lung cancer. J Clin Oncol (in press)Google Scholar
  148. 148.
    Wen PY, Schiff D, Cloughesy TF et al (2011) It is time to include patients with brain tumors in phase I trials in oncology. J Clin Oncol 29:3211–3213PubMedCrossRefGoogle Scholar
  149. 149.
    Wick A, Dorner N, Schafer N et al (2011) Bevacizumab does not increase the risk of remote relapse in malignant glioma. Ann Neurol 69:586–592PubMedCrossRefGoogle Scholar
  150. 150.
    Wu C, Li YL, Wang ZM, Li Z, Zhang TX, Wei Z (2007) Gefitinib as palliative therapy for lung adenocarcinoma metastatic to the brain. Lung Cancer 57:359–364PubMedCrossRefGoogle Scholar
  151. 151.
    Xie TX, Huang FJ, Aldape KD et al (2006) Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 66:3188–3196PubMedCrossRefGoogle Scholar
  152. 152.
    Yang M, Jiang P, An Z et al (1999) Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 5:3549–3559PubMedGoogle Scholar
  153. 153.
    Yang M, Jiang P, Sun FX et al (1999) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59:781–786PubMedGoogle Scholar
  154. 154.
    Yano S, Shinohara H, Herbst RS et al (2000) Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 60:4959–4967PubMedGoogle Scholar
  155. 155.
    Yin JJ, Zhang L, Munasinghe J, Linnoila RI, Kelly K (2010) Cediranib/AZD2171 inhibits bone and brain metastasis in a preclinical model of advanced prostate cancer. Cancer Res 70:8662–8673PubMedCrossRefGoogle Scholar
  156. 156.
    Yoshimasu T, Sakurai T, Oura S et al (2004) Increased expression of integrin alpha3beta1 in highly brain metastatic subclone of a human non-small cell lung cancer cell line. Cancer Sci 95:142–148PubMedCrossRefGoogle Scholar
  157. 157.
    Zhang L, Sullivan P, Suyama J, Marchetti D (2010) Epidermal growth factor-induced heparanase nucleolar localization augments DNA topoisomerase I activity in brain metastatic breast cancer. Mol Cancer Res 8:278–290PubMedCrossRefGoogle Scholar
  158. 158.
    Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71:645–654PubMedCrossRefGoogle Scholar
  159. 159.
    Zhang RD, Price JE, Schackert G, Itoh K, Fidler IJ (1991) Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis. Cancer Res 51:2029–2035PubMedGoogle Scholar
  160. 160.
    Zuniga RM, Torcuator R, Jain R et al (2009) Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91:329–336PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Matthias Preusser
    • 1
    Email author
  • David Capper
    • 2
  • Aysegül Ilhan-Mutlu
    • 1
  • Anna Sophie Berghoff
    • 3
  • Peter Birner
    • 4
  • Rupert Bartsch
    • 1
  • Christine Marosi
    • 1
  • Christoph Zielinski
    • 1
  • Minesh P. Mehta
    • 5
  • Frank Winkler
    • 6
  • Wolfgang Wick
    • 6
  • Andreas von Deimling
    • 2
  1. 1.Department of Medicine I, Comprehensive Cancer Center, CNS Tumours Unit (CCC-CNS)Medical University of ViennaViennaAustria
  2. 2.Department of Neuropathology, Institute of PathologyRuprecht-Karls-University Heidelberg, Clinical Cooperation Unit Neuropathology, German Cancer Research CenterHeidelbergGermany
  3. 3.Institute of Neurology, Comprehensive Cancer Center, CNS Tumours Unit (CCC-CNS)Medical University of ViennaViennaAustria
  4. 4.Department of Clinical Pathology and Comprehensive Cancer Center, CNS Tumours Unit (CCC-CNS)Medical University of ViennaViennaAustria
  5. 5.Northwestern UniversityChicagoUSA
  6. 6.Neurology Clinic and National Center for Tumor DiseaseUniversity of HeidelbergHeidelbergGermany

Personalised recommendations