Acta Neuropathologica

, Volume 122, Issue 6, pp 657–671 | Cite as

Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology

  • Paul G. Ince
  • J. Robin Highley
  • Janine Kirby
  • Stephen B. Wharton
  • Hitoshi Takahashi
  • Michael J. Strong
  • Pamela J. Shaw


Research into amyotrophic lateral sclerosis (ALS) has been stimulated by a series of genetic and molecular pathology discoveries. The hallmark neuronal cytoplasmic inclusions of sporadic ALS (sALS) predominantly comprise a nuclear RNA processing protein, TDP-43 encoded by the gene TARDBP, a discovery that emerged from high throughput analysis of human brain tissue from patients with frontotemporal dementia (FTD) who share a common molecular pathology with ALS. The link between RNA processing and ALS was further strengthened by the discovery that another genetic locus linking familial ALS (fALS) and FTD was due to mutation of the fused in sarcoma (FUS) gene. Of potentially even greater importance it emerges that TDP-43 accumulation and inclusion formation characterises not only most sALS cases but also those that arise from mutations in several genes including TARDBP (predominantly ALS cases) itself, C9ORF72 (ALS and FTD cases), progranulin (predominantly FTD phenotypes), VAPB (predominantly ALS cases) and in some ALS cases with rare genetic variants of uncertain pathogenicity (CHMP2B). “TDP-proteinopathy” therefore now represents a final common pathology associated with changes in multiple genes and opens the possibility of research by triangulation towards key common upstream molecular events. It also delivers final proof of the hypothesis that ALS and most FTD cases are disorders within a common pathology expressed as a clinico-anatomical spectrum. The emergence of TDP-proteinopathy also confirms the view that glial pathology is a crucial facet in this class of neurodegeneration, adding to the established view of non-nerve cell autonomous degeneration of the motor system from previous research on SOD1 fALS. Future research into the mechanisms of TDP-43 and FUS-related neurodegeneration, taking into account the major component of glial pathology now revealed in those disorders will significantly accelerate new discoveries in this field, including target identification for new therapy.


Amyotrophic lateral sclerosis Motor neuron disease Frontotemporal dementia TDP-43 TARDBP FUS SOD1 Genetics Molecular pathology Astrocyte Oligodendroglia Glia TDP-proteinopathy C9ORF72 


  1. 1.
    Abhyankar MM, Urekar C, Reddi PP (2007) A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function. J Biol Chem 282:36143–36154PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Chalabi A, Andersen PM, Nilsson P et al (1999) Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Human Mol Genet 8:157–164CrossRefGoogle Scholar
  3. 3.
    Al-Chalabi A, Fang F, Hanby MF et al (2010) An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 81:1324–1326PubMedCrossRefGoogle Scholar
  4. 4.
    Alexander MD, Traynor BJ, Miller N et al (2002) “True” sporadic ALS associated with a novel SOD-1 mutation. Ann Neurol 52:680–683PubMedCrossRefGoogle Scholar
  5. 5.
    Andersen PM (2006) Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep 6:37–46PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150PubMedCrossRefGoogle Scholar
  7. 7.
    Anneser J, Chahli C, Ince P et al (2004) Glial proliferation and metabotropic glutamate receptor expression in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 63:831–840PubMedGoogle Scholar
  8. 8.
    Anneser J, Cookson M, Ince P et al (2001) Glial cells of the spinal cord and subcortical white matter up-regulate neuronal nitric oxide synthase in sporadic amyotrophic lateral sclerosis. Exp Neurol 171:418–421PubMedCrossRefGoogle Scholar
  9. 9.
    Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRefGoogle Scholar
  10. 10.
    Ayala YM, De Conti L, Avendano-Vazquez SE et al (2011) TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J 30:277–288PubMedCrossRefGoogle Scholar
  11. 11.
    Ayala YM, Misteli T, Baralle FE (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci USA 105:3785–3789PubMedCrossRefGoogle Scholar
  12. 12.
    Ayala YM, Zago P, D’Ambrogio A et al (2008) Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121:3778–37785PubMedCrossRefGoogle Scholar
  13. 13.
    Baker M, Mackenzie IR, Pickering-Brown SM et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919PubMedCrossRefGoogle Scholar
  14. 14.
    Barmada SJ, Skibinski G, Korb E et al (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30:639–649PubMedCrossRefGoogle Scholar
  15. 15.
    Belzil VV, Daoud H, Desjarlais A et al (2010) Analysis of OPTN as a causative gene for amyotrophic lateral sclerosis. Neurobiol Aging 32:555.e13–555.e14CrossRefGoogle Scholar
  16. 16.
    Blackburn D, Sargsyan S, Monk P et al (2009) Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia 57:1251–1264PubMedCrossRefGoogle Scholar
  17. 17.
    Borroni B, Bonvicini C, Alberici A et al (2009) Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat 30:E974–E983PubMedCrossRefGoogle Scholar
  18. 18.
    Borthwick GM, Taylor RW, Walls TJ et al (2006) Motor neuron disease in a patient with a mitochondrial tRNAIle mutation. Ann Neurol 59:570–574PubMedCrossRefGoogle Scholar
  19. 19.
    Broe M, Kril J, Halliday G (2004) Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain 127:2214–2220PubMedCrossRefGoogle Scholar
  20. 20.
    Buratti E, De Conti L, Stuani C et al (2010) Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J 277:2268–2281PubMedCrossRefGoogle Scholar
  21. 21.
    Buratti E, Dork T, Zuccato E et al (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J 20:1774–1784PubMedCrossRefGoogle Scholar
  22. 22.
    Byrne S, Walsh C, Lynch C, et al (2010) Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatr. doi:10.1136/jnnp.2010.224501
  23. 23.
    Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22PubMedCrossRefGoogle Scholar
  24. 24.
    Chen YZ, Bennett CL, Huynh HM et al (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74:1128–1135PubMedCrossRefGoogle Scholar
  25. 25.
    Chiang PM, Ling J, Jeong YH et al (2010) Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci USA 107:16320–16324PubMedCrossRefGoogle Scholar
  26. 26.
    Chio A, Calvo A, Moglia C et al (2010) A de novo missense mutation of the FUS gene in a “true” sporadic ALS case. Neurobiol Aging 32:553.e23–553.e26CrossRefGoogle Scholar
  27. 27.
    Chow CY, Landers JE, Bergren SK et al (2009) Deleterious variants of FIG 4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88PubMedCrossRefGoogle Scholar
  28. 28.
    Colodner K, Montana R, Anthony D et al (2005) Proliferative potential of human astrocytes. J Neuropathol Exp Neurol 64:19–163Google Scholar
  29. 29.
    Colombrita C, Zennaro E, Fallini C et al (2009) TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 111:1051–1061PubMedCrossRefGoogle Scholar
  30. 30.
    Comi GP, Bordoni A, Salani S et al (1998) Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43:110–116PubMedCrossRefGoogle Scholar
  31. 31.
    Cox LE, Ferraiuolo L, Goodall EF et al (2010) Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One 5:e9872PubMedCrossRefGoogle Scholar
  32. 32.
    Cudkowicz ME, McKenna-Yasek D, Chen C et al (1998) Limited corticospinal tract involvement in amyotrophic lateral sclerosis subjects with the A4V mutation in the copper/zinc superoxide dismutase gene. Ann Neurol 43:703–710PubMedCrossRefGoogle Scholar
  33. 33.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:1–12CrossRefGoogle Scholar
  34. 34.
    Deng H-X, Chen W, Hong S-T et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. doi:10.1038/nature10353 (e-pub)
  35. 35.
    Deng H-X, Zhai H, Bigio EH et al (2010) FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol 67:739–748PubMedCrossRefGoogle Scholar
  36. 36.
    Dewey CM, Cenik B, Sephton CF et al (2011) TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 31:1098–1108PubMedCrossRefGoogle Scholar
  37. 37.
    Dormann D, Capell A, Carlson AM et al (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 110:1082–1094PubMedCrossRefGoogle Scholar
  38. 38.
    Dunckley T, Huentelman MJ, Craig DW et al (2007) Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med 357:775–788PubMedCrossRefGoogle Scholar
  39. 39.
    Fellin T (2009) Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J Neurochem 108:533–544PubMedCrossRefGoogle Scholar
  40. 40.
    Fiesel FC, Voigt A, Weber SS et al (2010) Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J 29:209–221PubMedCrossRefGoogle Scholar
  41. 41.
    Figlewicz DA, Krizus A, Martinoli MG et al (1994) Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Human Mol Genet 3:1757–1761CrossRefGoogle Scholar
  42. 42.
    Forsberg K, Andersen PM, Marklund SL, Brannstrom T (2011) Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol 121:623–634PubMedCrossRefGoogle Scholar
  43. 43.
    Freibaum BD, High AA, Chitta R et al (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9:1104–1120PubMedCrossRefGoogle Scholar
  44. 44.
    Fujita Y, Fujita S, Takatama M et al (2011) Numerous FUS-positive inclusions in an elderly woman with motor neuron disease. Neuropathology 31:170–176PubMedCrossRefGoogle Scholar
  45. 45.
    Gese F, Lee VM, Trojanowski JQ (2010) Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 30:103–112CrossRefGoogle Scholar
  46. 46.
    Geser F, Stein B, Partain M et al (2011) Motor neuron disease clinically limited to the lower motor neuron is a diffuse TDP-43 proteinopathy. Acta Neuropathol 121:509–517PubMedCrossRefGoogle Scholar
  47. 47.
    Greenway MJ, Andersen PM, Russ C et al (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413PubMedCrossRefGoogle Scholar
  48. 48.
    Groen EJ, van Es MA, van Vught PW et al (2010) FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands. Arch Neurol 67:224–230PubMedCrossRefGoogle Scholar
  49. 49.
    Gros-Louis F, Lariviere R, Gowing G et al (2004) A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem 279:45951–45956PubMedCrossRefGoogle Scholar
  50. 50.
    Hadano S, Hand CK, Osuga H et al (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29:166–173PubMedCrossRefGoogle Scholar
  51. 51.
    Hand CK, Khoris J, Salachas F et al (2002) A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am J Hum Genet 70:251–256PubMedCrossRefGoogle Scholar
  52. 52.
    Hanson KA, Kim SH, Wassarman DA et al (2010) Ubiquilin modifies TDP-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (ALS). J Biol Chem 285:11068–11072PubMedCrossRefGoogle Scholar
  53. 53.
    Hasegawa M, Arai T, Nonaka T et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70PubMedCrossRefGoogle Scholar
  54. 54.
    Hentati A, Bejaoui K, Pericak-Vance MA et al (1994) Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33–q35. Nat Genet 7:425–428PubMedCrossRefGoogle Scholar
  55. 55.
    Hewitt C, Kirby J, Highley JR et al (2010) Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 67:455–4561PubMedCrossRefGoogle Scholar
  56. 56.
    Higashi S, Tsuchiya Y, Araki T et al (2010) TDP-43 physically interacts with amyotrophic lateral sclerosis-linked mutant CuZn superoxide dismutase. Neurochem Int 57:906–913PubMedCrossRefGoogle Scholar
  57. 57.
    Hortobágyi T, Troakes C, Nishimura AL et al (2011) Optineurin inclusions occur in a minority of TDP-43 positive ALS and FTLD-TDP cases and are rarely observed in other neurodegenerative disorders. Acta Neuropathol 121:519–527PubMedCrossRefGoogle Scholar
  58. 58.
    Hosler BA, Siddique T, Sapp PC et al (2000) Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 284:1664–1669PubMedCrossRefGoogle Scholar
  59. 59.
    Huang EJ, Zhang J, Geser F et al (2010) Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol 20:1069–1076PubMedCrossRefGoogle Scholar
  60. 60.
    Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705PubMedCrossRefGoogle Scholar
  61. 61.
    Igaz LM, Kwong LK, Chen-Plotkin A et al (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284:8516–8524PubMedCrossRefGoogle Scholar
  62. 62.
    Igaz LM, Kwong LK, Lee EB et al (2011) Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121:726–738PubMedCrossRefGoogle Scholar
  63. 63.
    Iguchi Y, Katsuno M, Niwa J et al (2009) TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J Biol Chem 284:22059–22066PubMedCrossRefGoogle Scholar
  64. 64.
    Ilieva H, Polymenidou M, Cleveland D (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772PubMedCrossRefGoogle Scholar
  65. 65.
    Ince PG, Clark B, Holton J et al (2008) Diseases of movement and system degenerations. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s Neuropathology. Hodder Arnold, London, pp 889–1030Google Scholar
  66. 66.
    Ince PG, Lowe J, Shaw PJ (1998) Amyotrophic lateral sclerosis: current issues in classification, pathogenesis and molecular pathology. Neuropathol Appl Neurobiol 24:104–117PubMedCrossRefGoogle Scholar
  67. 67.
    Ince PG, Morris JC (2006) Demystifying lobar degenerations: tauopathies vs. Gehrigopathies. Neurology 66:8–9PubMedCrossRefGoogle Scholar
  68. 68.
    Ince PG, Tomkins J, Slade JY et al (1998) Amyotrophic lateral sclerosis associated with genetic abnormalities in the gene encoding Cu/Zn superoxide dismutase: molecular pathology of five new cases, and comparison with previous reports and 73 sporadic cases of ALS. J Neuropathol Exp Neurol 57:895–904PubMedCrossRefGoogle Scholar
  69. 69.
    Ito H, Fujita K, Nakamura M et al (2011) Optineurin is co-localized with FUS in basophilic inclusions of ALS with FUS mutation and in basophilic inclusion body disease. Acta Neuropathol 121:555–557PubMedCrossRefGoogle Scholar
  70. 70.
    Ito D, Seki M, Tsunoda Y et al (2010) Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol 69:152–162PubMedCrossRefGoogle Scholar
  71. 71.
    Jaarsma D, Teuling E, Haasdijk ED et al (2008) Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. J Neurosci 28:2075–2088PubMedCrossRefGoogle Scholar
  72. 72.
    Jackson M, Morrison KE, Al-Chalabi A et al (1996) Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: homozygous NAIP deletion in a sporadic case. Ann Neurol 39:796–800PubMedCrossRefGoogle Scholar
  73. 73.
    Johnson BS, McCaffery JM, Lindquist S et al (2008) A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci USA 105:6439–6444PubMedCrossRefGoogle Scholar
  74. 74.
    Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864PubMedCrossRefGoogle Scholar
  75. 75.
    Kabashi E, Lin L, Tradewell ML et al (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19:671–683PubMedCrossRefGoogle Scholar
  76. 76.
    Kahle PJ (2008) Alpha-synucleinopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:87–95PubMedCrossRefGoogle Scholar
  77. 77.
    Kim S, Engelhardt J, Henkel J et al (2004) Widespread increased expression of the DNA repair enzyme PARP in brain in ALS. Neurology 62:319–322PubMedGoogle Scholar
  78. 78.
    Kirby J, Goodall EF, Smith W et al (2010) Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis. Neurogenetics 11:217–225PubMedCrossRefGoogle Scholar
  79. 79.
    Kovacs GG, Murrell JR, Horvath S et al (2009) TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 24:1843–1847PubMedCrossRefGoogle Scholar
  80. 80.
    Kwiatkowski TJ, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208PubMedCrossRefGoogle Scholar
  81. 81.
    Laaksovirta H, Peuralinna T, Schymick JC et al (2010) Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol 9:978–985PubMedCrossRefGoogle Scholar
  82. 82.
    Lepore A, Dejea C, Carmen J et al (2008) Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration. Exp Neurol 211:423–432PubMedCrossRefGoogle Scholar
  83. 83.
    Leung CL, He CZ, Kaufmann P et al (2004) A pathogenic peripherin gene mutation in a patient with amyotrophic lateral sclerosis. Brain Pathol 14:290–296PubMedCrossRefGoogle Scholar
  84. 84.
    Lin CL, Bristol LA, Jin L et al (1998) Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20:589–602PubMedCrossRefGoogle Scholar
  85. 85.
    Liu-Yesucevitz L, Bilgutay A, Zhang YJ et al (2010) Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS ONE 5:e13250PubMedCrossRefGoogle Scholar
  86. 86.
    Liu HN, Sanelli T, Horne P et al (2009) Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis. Ann Neurol 66:75–80PubMedCrossRefGoogle Scholar
  87. 87.
    Lowe J, Mirra SS, Hyman BT et al (2008) Ageing and dementia. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology. Hodder Arnold, London, pp 1031–1152Google Scholar
  88. 88.
    Lu Y, Ferris J, Gao FB (2009) Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching. Mol Brain 2:30PubMedCrossRefGoogle Scholar
  89. 89.
    Luty AA, Kwok JB, Dobson-Stone C et al (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68:639–649PubMedCrossRefGoogle Scholar
  90. 90.
    Mackenzie IR, Ansorge O, Strong M et al (2011) Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation. Acta Neuropathol 122:87–98PubMedCrossRefGoogle Scholar
  91. 91.
    Mackenzie I, Bigio E, Ince P et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434PubMedCrossRefGoogle Scholar
  92. 92.
    Mackenzie IR, Neumann M, Bigio EH et al (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117:15–18PubMedCrossRefGoogle Scholar
  93. 93.
    Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRefGoogle Scholar
  94. 94.
    Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007PubMedCrossRefGoogle Scholar
  95. 95.
    Maekawa S, Leigh PN, King A et al (2009) TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 29:672–683PubMedCrossRefGoogle Scholar
  96. 96.
    Maihofner C, Probst-Cousin S, Bergmann M et al (2003) Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis. Eur J Neurosci 18:1527–1534PubMedCrossRefGoogle Scholar
  97. 97.
    Maruyama H, Morino H, Ito H et al (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226PubMedCrossRefGoogle Scholar
  98. 98.
    McDonald KK, Aulas A, Destroismaisons L et al (2001) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20:1400–1410CrossRefGoogle Scholar
  99. 99.
    Mercado PA, Ayala YM, Romano M et al (2005) Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res 33:6000–6010PubMedCrossRefGoogle Scholar
  100. 100.
    Migheli A, Cordera S, Bendotti C et al (1999) S-100β protein is upregulated in astrocytes and motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci Lett 261:25–28PubMedCrossRefGoogle Scholar
  101. 101.
    Migheli A, Piva R, Atzori C et al (1997) c-Jun, JNK/SAPK kinase and transcription factor NF-[kappa]B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 56:131413–131422Google Scholar
  102. 102.
    Miller D, Cookson M, Dickson DW (2004) Glial cell inclusions and the pathogenesis of neurodegenerative diseases. Neuron Glia Biol 1:13–21PubMedCrossRefGoogle Scholar
  103. 103.
    Mitchell J, Paul P, Chen HJ et al (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc Natl Acad Sci USA 107:7556–7561PubMedCrossRefGoogle Scholar
  104. 104.
    Moisse K, Mepham J, Volkening K et al (2009) Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL-/- mice: support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res 1296:176–186PubMedCrossRefGoogle Scholar
  105. 105.
    Moisse K, Volkening K, Leystra-Lantz C et al (2009) Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res 1249:202–211PubMedCrossRefGoogle Scholar
  106. 106.
    Murayama S, Inoue K, Kawakami H et al (1991) A unique pattern of astrocytosis in the primary motor area in amyotrophic lateral sclerosis. Acta Neuropathol 82:456–461PubMedCrossRefGoogle Scholar
  107. 107.
    Nagy D, Kato T, Kushner P (1994) Reactive astrocytes are widespread in the cortical gray matter of amyotrophical lateral sclerosis. J Neurosci Res 38:336–347PubMedCrossRefGoogle Scholar
  108. 108.
    Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent featurein all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149PubMedCrossRefGoogle Scholar
  109. 109.
    Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRefGoogle Scholar
  110. 110.
    Newbery H, Gillingwater T, Dharmasaroja P et al (2005) Progressive loss of motor neuron function in wasted mice: effects of a spontaneous null mutation in the gene for the eEF1A2 translation factor. J Neuropathol Exp Neurol 64:295–303PubMedGoogle Scholar
  111. 111.
    Nishihara Y, Tan C-F, Onudera O et al (2008) Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol 116:169–182CrossRefGoogle Scholar
  112. 112.
    Nishimoto Y, Ito D, Yagi T et al (2010) Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J Biol Chem 285:608–619PubMedCrossRefGoogle Scholar
  113. 113.
    Nishimura AL, Mitne-Neto M, Silva HC et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831PubMedCrossRefGoogle Scholar
  114. 114.
    Noda K, Katayama S, Watanabe C et al (1999) Gallyas- and tau-positive glial structures in motor neuron disease with dementia. Clin Neuropathol 18:218–225PubMedGoogle Scholar
  115. 115.
    Olkowski ZL (1998) Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport 9:239–242PubMedCrossRefGoogle Scholar
  116. 116.
    Ou SH, Wu F, Harrich D et al (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69:3584–3596PubMedGoogle Scholar
  117. 117.
    Parkinson N, Ince PG, Smith MO et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077PubMedCrossRefGoogle Scholar
  118. 118.
    Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. TINS 32:421–431PubMedGoogle Scholar
  119. 119.
    Piao YS, Wakabayashi K, Kakita A et al (2003) Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol 13:10–22PubMedCrossRefGoogle Scholar
  120. 120.
    Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neurosci 14:459–468PubMedCrossRefGoogle Scholar
  121. 121.
    Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-Linked ALS-FTD. Neuron 72:1–12CrossRefGoogle Scholar
  122. 122.
    Robel S, Berninger B, Gotz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nature reviews. Neuroscience 12:88–104PubMedGoogle Scholar
  123. 123.
    Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62PubMedCrossRefGoogle Scholar
  124. 124.
    Sapp PC, Hosler BA, McKenna-Yasek D et al (2003) Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet 73:397–403PubMedCrossRefGoogle Scholar
  125. 125.
    Sasaki S, Shibata N, Komori T et al (2000) iNOS and nitrotyrosine immunoreactivity in amyotrophic lateral sclerosis. Neurosci Lett 291:44–48PubMedCrossRefGoogle Scholar
  126. 126.
    Schiffer D, Cordera S, Cavalla P et al (1996) Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 139(Suppl):27–33PubMedCrossRefGoogle Scholar
  127. 127.
    Sephton CF, Cenik C, Kucukural A et al (2011) Identification of neuronal RNA targets of TDP-43-containing Ribonucleoprotein complexes. J Biol Chem 286:1204–1215PubMedCrossRefGoogle Scholar
  128. 128.
    Sephton CF, Good SK, Atkin S et al (2010) TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285:6826–6834PubMedCrossRefGoogle Scholar
  129. 129.
    Shatunov A, Mok K, Newhouse S et al (2010) Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurol 9:986–994PubMedCrossRefGoogle Scholar
  130. 130.
    Shiina Y, Arima K, Tabunoki H et al (2009) TDP-43 dimerizes in human cells in culture. Cell Mol Neurobiol 30:641–652PubMedCrossRefGoogle Scholar
  131. 131.
    Shulman JM, De Jager PL (2009) Evidence for a common pathway linking neurodegenerative diseases. Nat Genet 41:1261–1262PubMedCrossRefGoogle Scholar
  132. 132.
    Snowden JS, Hu Q, Rollinson S, Halliwell N et al (2011) The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene. Acta Neuropathol 122:99–110PubMedCrossRefGoogle Scholar
  133. 133.
    Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRefGoogle Scholar
  134. 134.
    Stallings NR, Puttaparthi K, Luther CM et al (2010) Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis 40:404–414PubMedCrossRefGoogle Scholar
  135. 135.
    Strong M, Kesavapany S, Pant H (2005) The pathobiology of amyotrophic lateral sclerosis: a proteinopathy? J Neuropathol Exp Neurol 64:649–664PubMedCrossRefGoogle Scholar
  136. 136.
    Sumi H, Kato S, Mochimaru Y et al (2009) Nuclear TAR DNA binding protein 43 expression in spinal cord neurons correlates with the clinical course in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 68:37–47PubMedCrossRefGoogle Scholar
  137. 137.
    Tateishi T, Hokonohara T, Yamasaki R et al (2010) Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol 119:355–364PubMedCrossRefGoogle Scholar
  138. 138.
    Tatom JB, Wang DB, Dayton RD et al (2009) Mimicking aspects of frontotemporal lobar degeneration and Lou Gehrig’s disease in rats via TDP-43 overexpression. Mol Ther 17:607–613PubMedCrossRefGoogle Scholar
  139. 139.
    Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neurosci 14:452–458PubMedCrossRefGoogle Scholar
  140. 140.
    Tomkins J, Usher P, Slade JY et al (1998) Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 9:3967–3970PubMedCrossRefGoogle Scholar
  141. 141.
    Tsai KJ, Yang CH, Fang YH et al (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673PubMedCrossRefGoogle Scholar
  142. 142.
    van Es MA, Van Vught PW, Blauw HM et al (2007) ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol 6:869–877PubMedCrossRefGoogle Scholar
  143. 143.
    van Es MA, van Vught PW, Blauw HM et al (2008) Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat Genet 40:29–31PubMedCrossRefGoogle Scholar
  144. 144.
    Van Langenhove T, van der Zee J, Sleegers K et al (2010) Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 74:366–371PubMedCrossRefGoogle Scholar
  145. 145.
    Vance C, Al-Chalabi A, Ruddy D et al (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain 129:868–876PubMedCrossRefGoogle Scholar
  146. 146.
    Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211PubMedCrossRefGoogle Scholar
  147. 147.
    Vargas M, Johnson J (2010) Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 7:471–481PubMedCrossRefGoogle Scholar
  148. 148.
    Vargas MR, Pehar M, Diaz-Amarilla PJ et al (2008) Transcriptional profile of primary astrocytes expressing ALS-linked mutant SOD1. J Neurosci Res 86:3515–3525PubMedCrossRefGoogle Scholar
  149. 149.
    Verkhratsky A, Olabarria M, Noristani H et al (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7:399–412PubMedCrossRefGoogle Scholar
  150. 150.
    Volkening K, Leystra-Lantz C, Yang W et al (2009) Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 1305:168–182PubMedCrossRefGoogle Scholar
  151. 151.
    Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640PubMedCrossRefGoogle Scholar
  152. 152.
    Wang L, Gutmann D, Roos R (2011) Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum Mol Genet 20:286–293PubMedCrossRefGoogle Scholar
  153. 153.
    Wegorzewska I, Bell S, Cairns NJ et al (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814PubMedCrossRefGoogle Scholar
  154. 154.
    Wils H, Kleinberger G, Janssens J et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3858–3863PubMedCrossRefGoogle Scholar
  155. 155.
    Winton MJ, Igaz LM, Wong MM et al (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 283:13302–13309PubMedCrossRefGoogle Scholar
  156. 156.
    Wroe R (2011) ALS online genetics database. Available from
  157. 157.
    Wu LS, Cheng WC, Hou SC et al (2010) TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 48:56–62PubMedGoogle Scholar
  158. 158.
    Xiao S, Sanelli T, Dib S et al (2011) RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol Cell Neurosci 47:167–180PubMedCrossRefGoogle Scholar
  159. 159.
    Xu YF, Gendron TF, Zhang YJ et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859PubMedCrossRefGoogle Scholar
  160. 160.
    Yamanaka K, Chun S, Boillee S et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253PubMedCrossRefGoogle Scholar
  161. 161.
    Yang C, Tan W, Whittle C et al (2010) The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 5:e15878PubMedCrossRefGoogle Scholar
  162. 162.
    Yang W, Sopper M, Leystra-Lantz C et al (2003) Microtubule-associated tau protein positive neuronal and glial inclusions in ALS. Neurology 61:1766–1773PubMedGoogle Scholar
  163. 163.
    Yang Y, Hentati A, Deng HX et al (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29:160–165PubMedCrossRefGoogle Scholar
  164. 164.
    Zarranz JJ, Ferrer I, Lezcano E et al (2005) A novel mutation (K317M) in the MAPT gene causes FTDP and motor neuron disease. Neurology 64:1578–1585PubMedCrossRefGoogle Scholar
  165. 165.
    Zhang H, Tan C-F, Mori F et al (2008) TDP-43 immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 115:115–122PubMedCrossRefGoogle Scholar
  166. 166.
    Zhang YJ, Xu YF, Cook C et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106:7607–7612PubMedCrossRefGoogle Scholar
  167. 167.
    Zhang YJ, Xu YF, Dickey CA et al (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27:10530–10534PubMedCrossRefGoogle Scholar
  168. 168.
    Zhou H, Huang C, Chen H et al (2010) Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet 6:e1000887PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Paul G. Ince
    • 1
  • J. Robin Highley
    • 1
  • Janine Kirby
    • 1
  • Stephen B. Wharton
    • 1
  • Hitoshi Takahashi
    • 2
  • Michael J. Strong
    • 3
  • Pamela J. Shaw
    • 1
  1. 1.Department of Neuroscience, Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
  2. 2.Brain Research InstituteNiigata UniversityNiigataJapan
  3. 3.Robarts Research Institute, Department of Clinical Neurological SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations