Acta Neuropathologica

, Volume 123, Issue 1, pp 31–37 | Cite as

The presence of Aβ seeds, and not age per se, is critical to the initiation of Aβ deposition in the brain

  • Tsuyoshi Hamaguchi
  • Yvonne S. Eisele
  • Nicholas H. Varvel
  • Bruce T. Lamb
  • Lary C. Walker
  • Mathias Jucker
Original Paper


The deposition of the β-amyloid (Aβ) peptide in senile plaques and cerebral Aβ-amyloid angiopathy can be seeded in β-amyloid precursor protein (APP)-transgenic mice by the intracerebral infusion of brain extracts containing aggregated Aβ. Previous studies of seeded β-amyloid induction have used relatively short incubation periods to dissociate seeded β-amyloid induction from endogenous β-amyloid deposition of the host, thus precluding the analysis of the impact of age and extended incubation periods on the instigation and spread of Aβ lesions in brain. In the present study using R1.40 APP-transgenic mice (which do not develop endogenous Aβ deposition up to 15 months of age) we show that: (1) seeding at 9 months of age does not induce more Aβ deposition than seeding at 3 months of age, provided that the incubation period (6 months) is the same; and (2) very long-term (12 months) incubation after a focal application of the seed results in the emergence of Aβ deposits throughout the forebrain. These findings indicate that the presence of Aβ seeds, and not the age of the host per se, is critical to the initiation of Aβ aggregation in the brain, and that Aβ deposition, actuated in one brain area, eventually spreads throughout the brain.


Alzheimer Amyloid Prion Seeding Senile plaques Transgenic mouse 



This work was supported by grants from the Competence Network on Degenerative Dementias (BMBF-01GI0705), the BMBF in the frame of ERA-Net NEURON (MIPROTRAN), NIH RR-00165, P50AG025688, the Alzheimer’s Association (NIRG-10-173099) and the CART Foundation. TH is recipient of a postdoctoral fellowship from the Alexander von Humboldt Foundation (Bonn, Germany). We gratefully acknowledge helpful discussions and experimental help of Franziska Langer, Götz Heilbronner, Ulrike Obermüller, Jörg Odenthal, Stephan Kaeser, Michael Hruscha and Andrea Bosch (Tübingen, Germany) and Harry LeVine III (Lexington, KY, USA).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ (1993) Evidence for the experimental transmission of cerebral beta-amyloidosis to primates. Int J Exp Pathol 74(5):441–454PubMedGoogle Scholar
  2. 2.
    Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919. doi: 10.1126/science.1141448 PubMedCrossRefGoogle Scholar
  3. 3.
    Dillin A, Cohen E (2011) Ageing and protein aggregation-mediated disorders: from invertebrates to mammals. Philos Trans R Soc Lond B Biol Sci 366(1561):94–98. doi: 10.1098/rstb.2010.0271 PubMedCrossRefGoogle Scholar
  4. 4.
    Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118(1):5–36. doi: 10.1007/s00401-009-0532-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC, Jucker M (2009) Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci USA 106(31):12926–12931. doi: 10.1073/pnas.0903200106 PubMedCrossRefGoogle Scholar
  6. 6.
    Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330(6006):980–982. doi: 10.1126/science.1194516 PubMedCrossRefGoogle Scholar
  7. 7.
    Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 4(7):827–831PubMedCrossRefGoogle Scholar
  8. 8.
    Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407. doi: 10.1146/annurev.biochem.66.1.385 PubMedCrossRefGoogle Scholar
  9. 9.
    Heuer E, Rosen RF, Cintron A, Walker LC (2011) Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des (in press)Google Scholar
  10. 10.
    Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer’s disease and other neurodegenerative disorders. Ann Neurol 70:532–540. doi: 10.1002/ana.22615 PubMedCrossRefGoogle Scholar
  11. 11.
    Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, Roher AE, Walker LC (2000) Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 20(10):3606–3611PubMedGoogle Scholar
  12. 12.
    Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21(2):372–381PubMedGoogle Scholar
  13. 13.
    Kulnane LS, Lamb BT (2001) Neuropathological characterization of mutant amyloid precursor protein yeast artificial chromosome transgenic mice. Neurobiol Dis 8(6):982–992. doi: 10.1006/nbdi.2001.0446 PubMedCrossRefGoogle Scholar
  14. 14.
    Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, Kokjohn TA, Kalback WM, Luehrs DC, Vishnivetskaya TA, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Weller RO, Roher AE (2001) The evolution of A beta peptide burden in the APP23 transgenic mice: implications for A beta deposition in Alzheimer disease. Mol Med 7(9):609–618PubMedGoogle Scholar
  15. 15.
    Lamb BT, Call LM, Slunt HH, Bardel KA, Lawler AM, Eckman CB, Younkin SG, Holtz G, Wagner SL, Price DL, Sisodia SS, Gearhart JD (1997) Altered metabolism of familial Alzheimer’s disease-linked amyloid precursor protein variants in yeast artificial chromosome transgenic mice. Hum Mol Genet 6(9):1535–1541PubMedCrossRefGoogle Scholar
  16. 16.
    Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M (2011) Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J Neurosci 31:14488–14495PubMedCrossRefGoogle Scholar
  17. 17.
    Lehman EJ, Kulnane LS, Gao Y, Petriello MC, Pimpis KM, Younkin L, Dolios G, Wang R, Younkin SG, Lamb BT (2003) Genetic background regulates beta-amyloid precursor protein processing and beta-amyloid deposition in the mouse. Hum Mol Genet 12(22):2949–2956. doi: 10.1093/hmg/ddg322 PubMedCrossRefGoogle Scholar
  18. 18.
    Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313(5794):1781–1784. doi: 10.1126/science.1131864 PubMedCrossRefGoogle Scholar
  19. 19.
    Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461(7266):916–922. doi: 10.1038/nature08538 PubMedCrossRefGoogle Scholar
  20. 20.
    Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991. doi: 10.1146/annurev.biochem.052308.114844 PubMedCrossRefGoogle Scholar
  21. 21.
    Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152. doi: 10.1038/nrneurol.2011.2 PubMedCrossRefGoogle Scholar
  22. 22.
    Ridley RM, Baker HF, Windle CP, Cummings RM (2006) Very long term studies of the seeding of beta-amyloidosis in primates. J Neural Transm 113(9):1243–1251. doi: 10.1007/s00702-005-0385-2 PubMedCrossRefGoogle Scholar
  23. 23.
    Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17(9):1060–1065. doi: 10.1038/nm.2460 PubMedCrossRefGoogle Scholar
  24. 24.
    Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437(7056):257–261. doi: 10.1038/nature03989 PubMedCrossRefGoogle Scholar
  25. 25.
    Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31(3):150–155. doi: 10.1016/j.tibs.2006.01.002 PubMedCrossRefGoogle Scholar
  26. 26.
    Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94(24):13287–13292PubMedCrossRefGoogle Scholar
  27. 27.
    Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowl Environ 2006(6):re1. doi: 10.1126/sageke.2006.6.re1
  28. 28.
    Walker LC, Levine H 3rd, Mattson MP, Jucker M (2006) Inducible proteopathies. Trends Neurosci 29(8):438–443. doi: 10.1016/j.tins.2006.06.010 PubMedCrossRefGoogle Scholar
  29. 29.
    Watts JC, Giles K, Grillo SK, Lemus A, DeArmond SJ, Prusiner SB (2011) Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA 108(6):2528–2533. doi: 10.1073/pnas.1019034108 PubMedCrossRefGoogle Scholar
  30. 30.
    Westermark GT, Johnson KH, Westermark P (1999) Staining methods for identification of amyloid in tissue. Methods Enzymol 309:3–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tsuyoshi Hamaguchi
    • 1
    • 2
  • Yvonne S. Eisele
    • 1
    • 2
  • Nicholas H. Varvel
    • 1
    • 2
  • Bruce T. Lamb
    • 3
  • Lary C. Walker
    • 4
  • Mathias Jucker
    • 1
    • 2
  1. 1.Department of Cellular NeurologyHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
  2. 2.DZNE, German Center for Neurodegenerative DiseasesTübingenGermany
  3. 3.The Lerner Research Institute, The Cleveland Clinic FoundationClevelandUSA
  4. 4.Department of Neurology, Yerkes National Primate Research CenterEmory UniversityAtlantaUSA

Personalised recommendations