Acta Neuropathologica

, Volume 122, Issue 6, pp 673–690 | Cite as

Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72

  • Melissa E. Murray
  • Mariely DeJesus-Hernandez
  • Nicola J. Rutherford
  • Matt Baker
  • Ranjan Duara
  • Neill R. Graff-Radford
  • Zbigniew K. Wszolek
  • Tanis J. Ferman
  • Keith A. Josephs
  • Kevin B. Boylan
  • Rosa Rademakers
  • Dennis W. DicksonEmail author
Original Paper


Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of a disease spectrum associated with TDP-43 pathology. Strong evidence supporting this is the existence of kindreds with family members affected by FTD, ALS or mixed features of FTD and ALS, referred to as FTD-MND. Some of these families have linkage to chromosome 9, with hexanucleotide expansion mutation in a noncoding region of C9ORF72. Discovery of the mutation defines c9FTD/ALS. Prior to discovery of mutations in C9ORF72, it was assumed that TDP-43 pathology in c9FTD/ALS was uniform. In this study, we examined the neuropathology and clinical features of 20 cases of c9FTD/ALS from a brain bank for neurodegenerative disorders. Included are six patients clinically diagnosed with ALS, eight FTD, one FTD-MND and four Alzheimer-type dementia. Clinical information was unavailable for one patient. Pathologically, the cases all had TDP-43 pathology, but there were three major pathologic groups: ALS, FTLD-MND and FTLD-TDP. The ALS cases were morphologically similar to typical sporadic ALS with almost no extramotor TDP-43 pathology; all had oligodendroglial cytoplasmic inclusions. The FTLD-MND showed predominantly Mackenzie Type 3 TDP-43 pathology, and all had ALS-like pathology in motor neurons, but more extensive extramotor pathology, with oligodendroglial cytoplasmic inclusions and infrequent hippocampal sclerosis. The FTLD-TDP cases had several features similar to FTLD-TDP due to mutations in the gene for progranulin, including Mackenzie Type 1 TDP-43 pathology with neuronal intranuclear inclusions and hippocampal sclerosis. FTLD-TDP patients were older and some were thought to have Alzheimer-type dementia. In addition to the FTD and ALS clinical presentations, the present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and the presence of hippocampal sclerosis. Moreover, there is pathologic heterogeneity not only between ALS and FTLD, but also within the FTLD group. Further studies are needed to address the molecular mechanism of clinical and pathological heterogeneity of c9FTD/ALS due to mutations in C9ORF72.


Amyotrophic Lateral Sclerosis Motor Neuron Disease Hippocampal Sclerosis Dystrophic Neurites Motor Neuron Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to all patients, family members, and caregivers who agreed to brain donation, without which these studies would have been impossible. We also acknowledge expert technical assistance of Monica Casey-Castanedes for immunohistochemistry, Linda Rousseau and Virginia Phillips for histology and John Gonzalez, Beth Marten, Pamela Desaro and Amelia Johnston for brain banking. This research was funded by Mayo Foundation (Jacoby Professorship of Alzheimer Research, Research Committee CR Program; ALS Center donor funds); National Institutes of Health (P50-AG16574, P50-NS72187, P01-AG03949, P01-AG17216, R01-AG37491, R01-AG15866, R01-NS65782 and R01-AG26251), the ALS Association; CurePSP/The Society for Progressive Supranuclear Palsy; and the State of Florida Alzheimer Disease Initiative.

Supplementary material

401_2011_907_MOESM1_ESM.doc (83 kb)
Supplementary material 1 (DOC 83 kb)


  1. 1.
    Amador-Ortiz C, Lin WL, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445PubMedCrossRefGoogle Scholar
  2. 2.
    Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRefGoogle Scholar
  3. 3.
    Boxer AL, Mackenzie IR, Boeve BF et al (2011) Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family. J Neurol Neurosurg Psychiatry 82:196–203PubMedCrossRefGoogle Scholar
  4. 4.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  5. 5.
    Brandmeir NJ, Geser F, Kwong LK et al (2008) Severe subcortical TDP-43 pathology in sporadic frontotemporal degeneration with motor neuron disease. Acta Neuropathol 115:123–131PubMedCrossRefGoogle Scholar
  6. 6.
    Broe M, Hodges JR, Schofield E et al (2003) Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 60:1005–1011PubMedGoogle Scholar
  7. 7.
    Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299PubMedCrossRefGoogle Scholar
  8. 8.
    Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22PubMedCrossRefGoogle Scholar
  9. 9.
    Dejesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCrossRefGoogle Scholar
  10. 10.
    Dickson D, Josephs K, Amador-Ortiz C (2007) TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol 114:71–79PubMedCrossRefGoogle Scholar
  11. 11.
    Dickson DW, Crystal HA, Mattiace LA et al (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189PubMedCrossRefGoogle Scholar
  12. 12.
    Dickson DW, Wertkin A, Kress Y, Ksiezak-Reding H, Yen SH (1990) Ubiquitin immunoreactive structures in normal human brains. Distribution and developmental aspects. Lab Invest 63:87–99PubMedGoogle Scholar
  13. 13.
    Fujioka S, Wszolek ZK (2011) Clinical aspects of familial forms of frontotemporal dementia associated with Parkinsonism. J Mol Neurosci (Epub ahead of print)Google Scholar
  14. 14.
    Fujishiro H, Ferman TJ, Boeve BF et al (2008) Validation of the neuropathologic criteria of the third consortium for dementia with Lewy bodies for prospectively diagnosed cases. J Neuropathol Exp Neurol 67:649–656PubMedCrossRefGoogle Scholar
  15. 15.
    Geser F, Brandmeir NJ, Kwong LK et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641PubMedCrossRefGoogle Scholar
  16. 16.
    Geser F, Lee VM, Trojanowski JQ (2010) Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 30:103–112PubMedCrossRefGoogle Scholar
  17. 17.
    Geser F, Stein B, Partain M et al (2011) Motor neuron disease clinically limited to the lower motor neuron is a diffuse TDP-43 proteinopathy. Acta Neuropathol 121:509–517PubMedCrossRefGoogle Scholar
  18. 18.
    Gijselinck I, Engelborghs S, Maes G et al (2010) Identification of 2 Loci at chromosomes 9 and 14 in a multiplex family with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 67:606–616PubMedCrossRefGoogle Scholar
  19. 19.
    Gitcho MA, Bigio EH, Mishra M et al (2009) TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathol 118:633–645PubMedCrossRefGoogle Scholar
  20. 20.
    Graff-Radford NR, Woodruff BK (2007) Frontotemporal dementia. Semin Neurol 27:48–57PubMedCrossRefGoogle Scholar
  21. 21.
    Hatanpaa KJ, Bigio EH, Cairns NJ et al (2008) TAR DNA-binding protein 43 immunohistochemistry reveals extensive neuritic pathology in FTLD-U: a midwest-southwest consortium for FTLD study. J Neuropathol Exp Neurol 67:271–279PubMedCrossRefGoogle Scholar
  22. 22.
    Inukai Y, Nonaka T, Arai T et al (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett 582:2899–2904PubMedCrossRefGoogle Scholar
  23. 23.
    Jellinger KA, Attems J (2003) Incidence of cerebrovascular lesions in Alzheimer’s disease: a postmortem study. Acta Neuropathol 105:14–17PubMedGoogle Scholar
  24. 24.
    Josephs KA, Ahmed Z, Katsuse O et al (2007) Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J Neuropathol Exp Neurol 66:142–151PubMedCrossRefGoogle Scholar
  25. 25.
    Josephs KA, Dickson DW (2007) Hippocampal sclerosis in tau-negative frontotemporal lobar degeneration. Neurobiol Aging 28:1718–1722PubMedCrossRefGoogle Scholar
  26. 26.
    Josephs KA, Stroh A, Dugger B, Dickson DW (2009) Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta Neuropathol 118:349–358PubMedCrossRefGoogle Scholar
  27. 27.
    Josephs KA, Whitwell JL, Parisi JE et al (2010) Caudate atrophy on MRI is a characteristic feature of FTLD-FUS. Eur J Neurol 17:969–975PubMedCrossRefGoogle Scholar
  28. 28.
    Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574PubMedCrossRefGoogle Scholar
  29. 29.
    Kelley BJ, Haidar W, Boeve BF et al (2009) Prominent phenotypic variability associated with mutations in Progranulin. Neurobiol Aging 30:739–751PubMedCrossRefGoogle Scholar
  30. 30.
    Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42:1097–1105PubMedGoogle Scholar
  31. 31.
    Kobayashi Z, Tsuchiya K, Arai T et al (2010) Clinicopathological characteristics of FTLD-TDP showing corticospinal tract degeneration but lacking lower motor neuron loss. J Neurol Sci 298:70–77PubMedCrossRefGoogle Scholar
  32. 32.
    Kovacs GG, Murrell JR, Horvath S et al (2009) TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 24:1843–1847PubMedCrossRefGoogle Scholar
  33. 33.
    Laaksovirta H, Peuralinna T, Schymick JC et al (2010) Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol 9:978–985PubMedCrossRefGoogle Scholar
  34. 34.
    Le Ber I, Camuzat A, Berger E et al (2009) Chromosome 9p-linked families with frontotemporal dementia associated with motor neuron disease. Neurology 72:1669–1676PubMedCrossRefGoogle Scholar
  35. 35.
    Lin WL, Castanedes-Casey M, Dickson DW (2009) Transactivation response DNA-binding protein 43 microvasculopathy in frontotemporal degeneration and familial Lewy body disease. J Neuropathol Exp Neurol 68:1167–1176PubMedCrossRefGoogle Scholar
  36. 36.
    Lipton AM, White CL 3rd, Bigio EH (2004) Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathol 108:379–385PubMedCrossRefGoogle Scholar
  37. 37.
    Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079PubMedGoogle Scholar
  38. 38.
    Luty AA, Kwok JB, Thompson EM et al (2008) Pedigree with frontotemporal lobar degeneration–motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9. BMC Neurol 8:32PubMedCrossRefGoogle Scholar
  39. 39.
    Mackenzie I, Baborie A, Pickering-Brown S et al (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 112:539–549PubMedCrossRefGoogle Scholar
  40. 40.
    Mackenzie IR (2007) The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathol 114:49–54PubMedCrossRefGoogle Scholar
  41. 41.
    Mackenzie IR, Baker M, Pickering-Brown S et al (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129:3081–3090PubMedCrossRefGoogle Scholar
  42. 42.
    Mackenzie IR, Bigio EH, Ince PG et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434PubMedCrossRefGoogle Scholar
  43. 43.
    Mackenzie IR, Feldman H (2004) Neuronal intranuclear inclusions distinguish familial FTD-MND type from sporadic cases. Dement Geriatr Cogn Disord 17:333–336PubMedCrossRefGoogle Scholar
  44. 44.
    Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113PubMedCrossRefGoogle Scholar
  45. 45.
    Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRefGoogle Scholar
  46. 46.
    Momeni P, Schymick J, Jain S et al (2006) Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurol 6:44PubMedCrossRefGoogle Scholar
  47. 47.
    Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844PubMedCrossRefGoogle Scholar
  48. 48.
    Murphy JM, Henry RG, Langmore S et al (2007) Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol 64:530–534PubMedCrossRefGoogle Scholar
  49. 49.
    Murray ME, Graff-Radford NR, Ross OA et al (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796PubMedCrossRefGoogle Scholar
  50. 50.
    Neumann M, Kwong LK, Truax AC et al (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66:177–183PubMedCrossRefGoogle Scholar
  51. 51.
    Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRefGoogle Scholar
  52. 52.
    Pao WC, Dickson DW, Crook JE, et al (2011) Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis Assoc Disord. (Epub ahead of print)Google Scholar
  53. 53.
    Pearson JP, Williams NM, Majounie E et al (2011) Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p. J Neurol 258:647–655PubMedCrossRefGoogle Scholar
  54. 54.
    Pikkarainen M, Hartikainen P, Alafuzoff I (2008) Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions visualized with ubiquitin-binding protein p62 immunohistochemistry. J Neuropathol Exp Neurol 67:280–298PubMedCrossRefGoogle Scholar
  55. 55.
    Rademakers R, Baker M, Gass J et al (2007) Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurol 6:857–868PubMedCrossRefGoogle Scholar
  56. 56.
    Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS–FTD. Neuron 72:257–268PubMedCrossRefGoogle Scholar
  57. 57.
    Rutherford NJ, Zhang YJ, Baker M et al (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4:e1000193PubMedCrossRefGoogle Scholar
  58. 58.
    Sampathu DM, Neumann M, Kwong LK et al (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 169:1343–1352PubMedCrossRefGoogle Scholar
  59. 59.
    Shatunov A, Mok K, Newhouse S et al (2010) Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurol 9:986–994PubMedCrossRefGoogle Scholar
  60. 60.
    Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRefGoogle Scholar
  61. 61.
    Tan CF, Eguchi H, Tagawa A et al (2007) TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol 113:535–542PubMedCrossRefGoogle Scholar
  62. 62.
    Valdmanis PN, Dupre N, Bouchard JP et al (2007) Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. Arch Neurol 64:240–245PubMedCrossRefGoogle Scholar
  63. 63.
    Van Deerlin VM, Sleiman PM, Martinez-Lage M et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42:234–239PubMedCrossRefGoogle Scholar
  64. 64.
    van Es MA, Veldink JH, Saris CG et al (2009) Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet 41:1083–1087PubMedCrossRefGoogle Scholar
  65. 65.
    Vance C, Al-Chalabi A, Ruddy D et al (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain 129:868–876PubMedCrossRefGoogle Scholar
  66. 66.
    Wider C, Uitti RJ, Wszolek ZK et al (2008) Progranulin gene mutation with an unusual clinical and neuropathologic presentation. Mov Disord 23:1168–1173PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang H, Tan CF, Mori F et al (2008) TDP-43-immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 115:115–122PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Melissa E. Murray
    • 1
  • Mariely DeJesus-Hernandez
    • 1
  • Nicola J. Rutherford
    • 1
  • Matt Baker
    • 1
  • Ranjan Duara
    • 3
  • Neill R. Graff-Radford
    • 2
  • Zbigniew K. Wszolek
    • 2
  • Tanis J. Ferman
    • 4
  • Keith A. Josephs
    • 5
  • Kevin B. Boylan
    • 2
  • Rosa Rademakers
    • 1
  • Dennis W. Dickson
    • 1
    Email author
  1. 1.Department of NeuroscienceMayo ClinicJacksonvilleUSA
  2. 2.Department of NeurologyMayo ClinicJacksonvilleUSA
  3. 3.Wien Center for Alzheimer’s Disease and Memory DisordersMount Sinai Medical CenterMiami BeachUSA
  4. 4.Department of PsychologyMayo ClinicJacksonvilleUSA
  5. 5.Department of NeurologyMayo ClinicRochesterUSA

Personalised recommendations