Acta Neuropathologica

, Volume 123, Issue 1, pp 39–52 | Cite as

Apolipoprotein E level and cholesterol are associated with reduced synaptic amyloid beta in Alzheimer’s disease and apoE TR mouse cortex

  • Stephen Arold
  • Patrick Sullivan
  • Tina Bilousova
  • Edmond Teng
  • Carol A. Miller
  • Wayne W. Poon
  • Harry V. Vinters
  • Lindsey B. Cornwell
  • Tommy Saing
  • Gregory M. Cole
  • Karen Hoppens GylysEmail author
Original Paper


The apolipoprotein E4 allele (APOE4) contributes to Alzheimer’s disease (AD) risk and APOE2 is protective, but the relevant cellular mechanisms are unknown. We have used flow cytometry analysis to measure apolipoprotein E (apoE) and amyloid beta peptide (Aβ) levels in large populations of synaptic terminals from AD and aged cognitively normal controls, and demonstrate that modest but significant increases in soluble apoE levels accompany elevated Aβ in AD cortical synapses and in an APP/PS1 rat model of AD. Dual labeling experiments document co-localization of apoE and Aβ in individual synapses with concentration of Aβ in a small population of apoE-positive synapses in both AD and controls. Consistent with a clearance role, the apoE level was higher in Aβ-positive synapses in control cases. In aged targeted replacement mice expressing human apoE, apoE2/4 synaptic terminals demonstrated the highest level of apoE and the lowest level of Aβ compared to apoE3/3 and apoE4/4 lines. In apoE2/4 terminals, the pattern of immunolabeling for apoE and Aβ closely resembled the pattern in human control cases, and elevated apoE was accompanied by elevated free cholesterol in apoE2/4 synaptic terminals. These results are consistent with a role for APOE in Aβ clearance in AD synapses, and suggest that optimal lipidation of apoE2 compared to E3 and E4 makes an important contribution to Aβ clearance and synaptic function.


Synaptosome Flow cytometry Filipin Ganglioside GM1 Triple transgenic mouse Triple transgenic rat 



This work was supported by NIH AG27465 to KHG, by NIH NS43946 to GMC, by NIA AG18879 to CAM. HVV is supported by the Daljit S. and Elaine Sarkaria Chair in Diagnostic Medicine. Tissue was obtained from the the Alzheimer’s Disease Research Center Neuropathology Cores of USC (NIA 050 AG05142), UCLA (NIA P50 AG 16970), and UC Irvine (NIA P50 AG016573). Flow cytometry was performed in the UCLA Jonsson Comprehensive Cancer Center (JCCC) and Center for AIDS Research Flow Cytometry Core Facility supported by NIH CA16042 and AI 28697, and by the JCCC, the UCLA AIDS Institute, the David Geffen School of Medicine and the Chancellor’s Office at UCLA. ET is supported by K08 AG-34628 (jointly sponsored by NIA, AFAR, the John A. Hartford Foundation and the Atlantic Philanthropies, the Starr Foundation, and an anonymous donor).

Supplementary material

401_2011_892_MOESM1_ESM.doc (58 kb)
Supplementary material 1 (DOC 58 kb)
401_2011_892_MOESM2_ESM.doc (282 kb)
Supplementary material 2 (DOC 281 kb)


  1. 1.
    Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM, Paul SM (2009) Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci 29:6771–6779PubMedCrossRefGoogle Scholar
  2. 2.
    Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, Martins RN (2009) Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14:469–486PubMedCrossRefGoogle Scholar
  3. 3.
    Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918PubMedGoogle Scholar
  4. 4.
    Bour A, Grootendorst J, Vogel E, Kelche C, Dodart JC, Bales K, Moreau PH, Sullivan PM, Mathis C (2008) Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks. Behav Brain Res 193:174–182PubMedCrossRefGoogle Scholar
  5. 5.
    Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10:333–344PubMedCrossRefGoogle Scholar
  6. 6.
    Castellano JM, Kim J, Stewart FR, Jiang H, Demattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-{beta} peptide clearance. Sci Transl Med 3:57–89CrossRefGoogle Scholar
  7. 7.
    Christensen DZ, Schneider-Axmann T, Lucassen PJ, Bayer TA, Wirths O (2010) Accumulation of intraneuronal Abeta correlates with ApoE4 genotype. Acta Neuropathol 119:555–566PubMedCrossRefGoogle Scholar
  8. 8.
    Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184PubMedCrossRefGoogle Scholar
  9. 9.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923PubMedCrossRefGoogle Scholar
  10. 10.
    Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118:4002–4013PubMedCrossRefGoogle Scholar
  11. 11.
    Donkin JJ, Stukas S, Hirsch-Reinshagen V, Namjoshi D, Wilkinson A, May S, Chan J, Fan J, Collins J, Wellington CL (2010) ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J Biol Chem 285:34144–34154PubMedCrossRefGoogle Scholar
  12. 12.
    Dumanis SB, Tesoriero JA, Babus LW, Nguyen MT, Trotter JH, Ladu MJ, Weeber EJ, Turner RS, Xu B, Rebeck GW, Hoe HS (2009) ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci 29:15317–15322PubMedCrossRefGoogle Scholar
  13. 13.
    Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3:1718–1728PubMedCrossRefGoogle Scholar
  14. 14.
    Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, Gylys KH (2008) Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol 172:1683–1692PubMedCrossRefGoogle Scholar
  15. 15.
    Fitz NF, Cronican A, Pham T, Fogg A, Fauq AH, Chapman R, Lefterov I, Koldamova R (2010) Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice. J Neurosci 30:6862–6872PubMedCrossRefGoogle Scholar
  16. 16.
    Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, Scott RW, Howland DS (2009) A transgenic rat model of Alzheimer’s disease with extracellular Abeta deposition. Neurobiol Aging 30:1078–1090PubMedCrossRefGoogle Scholar
  17. 17.
    Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, Ellis KA, Lui JK, Masters C, Rowe CC, Szoeke C, Taddei K, Martins RN (2011) Plasma apolipoprotein E and Alzheimer disease risk: the AIBL study of aging. Neurology 76:1091–1098PubMedCrossRefGoogle Scholar
  18. 18.
    Gylys KH, Fein JA, Tan AM, Cole GM (2003) Apolipoprotein E enhances uptake of soluble but not aggregated amyloid-beta protein into synaptic terminals. J Neurochem 84:1442–1451PubMedCrossRefGoogle Scholar
  19. 19.
    Gylys KH, Fein JA, Yang F, Cole GM (2004) Enrichment of presynaptic and postsynaptic markers by size-based gating analysis of synaptosome preparations from rat and human cortex. Cytometry A 60:90–96PubMedCrossRefGoogle Scholar
  20. 20.
    Gylys KH, Fein JA, Yang F, Miller CA, Cole GM (2007) Increased cholesterol in Abeta-positive nerve terminals from Alzheimer’s disease cortex. Neurobiol Aging 28:8–17PubMedCrossRefGoogle Scholar
  21. 21.
    Gylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM (2004) Synaptic changes in Alzheimer’s disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol 165:1809–1817PubMedCrossRefGoogle Scholar
  22. 22.
    Hirsch-Reinshagen V, Maia LF, Burgess BL, Blain JF, Naus KE, McIsaac SA, Parkinson PF, Chan JY, Tansley GH, Hayden MR, Poirier J, Van Nostrand W, Wellington CL (2005) The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J Biol Chem 280:43243–43256PubMedCrossRefGoogle Scholar
  23. 23.
    Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31:545–548PubMedGoogle Scholar
  24. 24.
    Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A, Moir RD, Domnitz SB, Frosch MP, Windisch M, Kovacs DM (2004) The ACAT inhibitor CP-113, 818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron 44:227–238PubMedCrossRefGoogle Scholar
  25. 25.
    Igbavboa U, Eckert GP, Malo TM, Studniski AE, Johnson LN, Yamamoto N, Kobayashi M, Fujita SC, Appel TR, Muller WE, Wood WG, Yanagisawa K (2005) Murine synaptosomal lipid raft protein and lipid composition are altered by expression of human apoE 3 and 4 and by increasing age. J Neurol Sci 229–230:225–232PubMedCrossRefGoogle Scholar
  26. 26.
    Ito S, Ohtsuki S, Kamiie J, Nezu Y, Terasaki T (2007) Cerebral clearance of human amyloid-beta peptide (1–40) across the blood-brain barrier is reduced by self-aggregation and formation of low-density lipoprotein receptor-related protein-1 ligand complexes. J Neurochem 103:2482–2490PubMedCrossRefGoogle Scholar
  27. 27.
    Jenner AM, Lim WL, Ng MP, Wenk MR, Shui G, Sharman MJ, Gandy SE, Martins RN (2010) The effect of APOE genotype on brain levels of oxysterols in young and old human APOE epsilon2, epsilon3 and epsilon4 knock-in mice. Neuroscience 169:109–115PubMedCrossRefGoogle Scholar
  28. 28.
    Ji Y, Gong Y, Gan W, Beach T, Holtzman DM, Wisniewski T (2003) Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients. Neuroscience 122:305–315PubMedCrossRefGoogle Scholar
  29. 29.
    Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58:681–693PubMedCrossRefGoogle Scholar
  30. 30.
    Josephs KA, Tsuboi Y, Cookson N, Watt H, Dickson DW (2004) Apolipoprotein E epsilon 4 is a determinant for Alzheimer-type pathologic features in tauopathies, synucleinopathies, and frontotemporal degeneration. Arch Neurol 61:1579–1584PubMedCrossRefGoogle Scholar
  31. 31.
    Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63:287–303PubMedCrossRefGoogle Scholar
  32. 32.
    Klein RC, Mace BE, Moore SD, Sullivan PM (2010) Progressive loss of synaptic integrity in human apolipoprotein E4 targeted replacement mice and attenuation by apolipoprotein E2. Neuroscience 171:1265–1272PubMedCrossRefGoogle Scholar
  33. 33.
    Koldamova R, Fitz NF, Lefterov I (2010) The role of ATP-binding cassette transporter A1 in Alzheimer’s disease and neurodegeneration. Biochim Biophys Acta 1801:824–830PubMedGoogle Scholar
  34. 34.
    Koldamova R, Staufenbiel M, Lefterov I (2005) Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem 280:43224–43235PubMedCrossRefGoogle Scholar
  35. 35.
    LaDu MJ, Falduto MT, Manelli AM, Reardon CA, Getz GS, Frail DE (1994) Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem 269:23403–23406PubMedGoogle Scholar
  36. 36.
    LaDu MJ, Lukens JR, Reardon CA, Getz GS (1997) Association of human, rat, and rabbit apolipoprotein E with beta-amyloid. J Neurosci Res 49:9–18PubMedCrossRefGoogle Scholar
  37. 37.
    Leduc V, Jasmin-Belanger S, Poirier J (2010) APOE and cholesterol homeostasis in Alzheimer’s disease. Trends Mol Med 16:469–477PubMedCrossRefGoogle Scholar
  38. 38.
    Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32PubMedCrossRefGoogle Scholar
  39. 39.
    Levi O, Lutjohann D, Devir A, von Bergmann K, Hartmann T, Michaelson DM (2005) Regulation of hippocampal cholesterol metabolism by apoE and environmental stimulation. J Neurochem 95:987–997PubMedCrossRefGoogle Scholar
  40. 40.
    Love S, Siew LK, Dawbarn D, Wilcock GK, Ben-Shlomo Y, Allen SJ (2006) Premorbid effects of APOE on synaptic proteins in human temporal neocortex. Neurobiol Aging 27:797–803PubMedCrossRefGoogle Scholar
  41. 41.
    Ma J, Yee A, Brewer HB Jr, Das S, Potter H (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372:92–94PubMedCrossRefGoogle Scholar
  42. 42.
    Mahley RW, Weisgraber KH, Huang Y (2006) Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci USA 103:5644–5651PubMedCrossRefGoogle Scholar
  43. 43.
    Mak K, Yang F, Vinters HV, Frautschy SA, Cole GM (1994) Polyclonals to beta-amyloid(1–42) identify most plaque and vascular deposits in Alzheimer cortex, but not striatum. Brain Res 667:138–142PubMedCrossRefGoogle Scholar
  44. 44.
    Manelli AM, Stine WB, Van Eldik LJ, LaDu MJ (2004) ApoE and Abeta1–42 interactions: effects of isoform and conformation on structure and function. J Mol Neurosci 23:235–246PubMedCrossRefGoogle Scholar
  45. 45.
    Martinez M, Brice A, Vaughan JR, Zimprich A, Breteler MM, Meco G, Filla A, Farrer MJ, Betard C, Singleton A, Hardy J, De Michele G, Bonifati V, Oostra BA, Gasser T, Wood NW, Durr A (2005) Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 136B:72–74PubMedCrossRefGoogle Scholar
  46. 46.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774PubMedCrossRefGoogle Scholar
  47. 47.
    Muller CP, Stephany DA, Winkler DF, Hoeg JM, Demosky SJ Jr, Wunderlich JR (1984) Filipin as a flow microfluorometry probe for cellular cholesterol. Cytometry 5:42–54PubMedCrossRefGoogle Scholar
  48. 48.
    Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577PubMedCrossRefGoogle Scholar
  49. 49.
    Naslund J, Thyberg J, Tjernberg LO, Wernstedt C, Karlstrom AR, Bogdanovic N, Gandy SE, Lannfelt L, Terenius L, Nordstedt C (1995) Characterization of stable complexes involving apolipoprotein E and the amyloid beta peptide in Alzheimer’s disease brain. Neuron 15:219–228PubMedCrossRefGoogle Scholar
  50. 50.
    Nishiyama E, Iwamoto N, Ohwada J, Arai H (1997) Distribution of apolipoprotein E in senile plaques in brains with Alzheimer’s disease: investigation with the confocal laser scan microscope. Brain Res 750:20–24PubMedCrossRefGoogle Scholar
  51. 51.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421PubMedCrossRefGoogle Scholar
  52. 52.
    Ramaswamy G, Xu Q, Huang Y, Weisgraber KH (2005) Effect of domain interaction on apolipoprotein E levels in mouse brain. J Neurosci 25:10658–10663PubMedCrossRefGoogle Scholar
  53. 53.
    Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, Ayutyanont N, Keppler J, Reeder SA, Langbaum JB, Alexander GE, Klunk WE, Mathis CA, Price JC, Aizenstein HJ, DeKosky ST, Caselli RJ (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 106:6820–6825PubMedCrossRefGoogle Scholar
  54. 54.
    Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ, Jefferson J, Xu L, Aschmies S, Kirksey Y, Hu Y, Wagner E, Parratt A, Xu J, Li Z, Zaleska MM, Jacobsen JS, Pangalos MN, Reinhart PH (2008) Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci 28:11445–11453PubMedCrossRefGoogle Scholar
  55. 55.
    Schmid I, Uittenbogaart CH, Giorgi JV (1991) A gentle fixation and permeabilization method for combined cell surface and intracellular staining with improved precision in DNA quantification. Cytometry 12:279–285PubMedCrossRefGoogle Scholar
  56. 56.
    Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA (2009) The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 66:200–208PubMedCrossRefGoogle Scholar
  57. 57.
    Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113PubMedCrossRefGoogle Scholar
  58. 58.
    Sokolow S, Henkins KM, Bilousova T, Miller CA, Vinters HV, Poon W, Cole GM, Gylys KH (2011) AD synapses contain abundant Abeta monomer and multiple soluble oligomers, including a 56-kDa assembly. Neurobiol Aging [Epub ahead of print]Google Scholar
  59. 59.
    Sullivan PM, Han B, Liu F, Mace BE, Ervin JF, Wu S, Koger D, Paul S, Bales KR (2011) Reduced levels of human apoE4 protein in an animal model of cognitive impairment. Neurobiol Aging 32:791–801PubMedCrossRefGoogle Scholar
  60. 60.
    Sullivan PM, Mace BE, Estrada JC, Schmechel DE, Alberts MJ (2008) Human apolipoprotein E4 targeted replacement mice show increased prevalence of intracerebral hemorrhage associated with vascular amyloid deposition. J Stroke Cerebrovasc Dis 17:303–311PubMedCrossRefGoogle Scholar
  61. 61.
    Sullivan PM, Mace BE, Maeda N, Schmechel DE (2004) Marked regional differences of brain human apolipoprotein E expression in targeted replacement mice. Neuroscience 124:725–733PubMedCrossRefGoogle Scholar
  62. 62.
    Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL, Quarfordt SH, Maeda N (1997) Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 272:17972–17980PubMedCrossRefGoogle Scholar
  63. 63.
    Sullivan PM, Mezdour H, Quarfordt SH, Maeda N (1998) Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2. J Clin Invest 102:130–135PubMedCrossRefGoogle Scholar
  64. 64.
    Thal DR, Capetillo-Zarate E, Schultz C, Rub U, Saido TC, Yamaguchi H, Haass C, Griffin WS, Del Tredici K, Braak H, Ghebremedhin E (2005) Apolipoprotein E co-localizes with newly formed amyloid beta-protein (Abeta) deposits lacking immunoreactivity against N-terminal epitopes of Abeta in a genotype-dependent manner. Acta Neuropathol 110:459–471PubMedCrossRefGoogle Scholar
  65. 65.
    Thal DR, Papassotiropoulos A, Saido TC, Griffin WS, Mrak RE, Kolsch H, Del Tredici K, Attems J, Ghebremedhin E (2010) Capillary cerebral amyloid angiopathy identifies a distinct APOE epsilon4-associated subtype of sporadic Alzheimer’s disease. Acta Neuropathol 120:169–183PubMedCrossRefGoogle Scholar
  66. 66.
    Tiraboschi P, Hansen LA, Masliah E, Alford M, Thal LJ, Corey-Bloom J (2004) Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 62:1977–1983PubMedGoogle Scholar
  67. 67.
    Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661PubMedCrossRefGoogle Scholar
  68. 68.
    Utermann G, Langenbeck U, Beisiegel U, Weber W (1980) Genetics of the apolipoprotein E system in man. Am J Hum Genet 32:339–347PubMedGoogle Scholar
  69. 69.
    Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, Holtzman DM (2005) Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 280:43236–43242PubMedCrossRefGoogle Scholar
  70. 70.
    Wang C, Wilson WA, Moore SD, Mace BE, Maeda N, Schmechel DE, Sullivan PM (2005) Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol Dis 18:390–398PubMedCrossRefGoogle Scholar
  71. 71.
    Wisniewski T, Castano EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145:1030–1035PubMedGoogle Scholar
  72. 72.
    Wolf ME, Kapatos G (1989) Flow cytometric analysis of rat striatal nerve terminals. J Neurosci 9:94–105PubMedGoogle Scholar
  73. 73.
    Wood WG, Igbavboa U, Muller WE, Eckert GP (2011) Cholesterol asymmetry in synaptic plasma membranes. J Neurochem 116:684–689Google Scholar
  74. 74.
    Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26:4985–4994PubMedCrossRefGoogle Scholar
  75. 75.
    Yanagisawa K (2007) Role of gangliosides in Alzheimer’s disease. Biochim Biophys Acta 1768:1943–1951PubMedCrossRefGoogle Scholar
  76. 76.
    Yang DS, Smith JD, Zhou Z, Gandy SE, Martins RN (1997) Characterization of the binding of amyloid-beta peptide to cell culture-derived native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human plasma. J Neurochem 68:721–725PubMedCrossRefGoogle Scholar
  77. 77.
    Youmans KL, Leung S, Zhang J, Maus E, Baysac K, Bu G, Vassar R, Yu C, LaDu MJ (2011) Amyloid-beta42 alters apolipoprotein E solubility in brains of mice with five familial AD mutations. J Neurosci Methods 196:51–59PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stephen Arold
    • 1
  • Patrick Sullivan
    • 2
  • Tina Bilousova
    • 1
  • Edmond Teng
    • 3
    • 6
  • Carol A. Miller
    • 7
  • Wayne W. Poon
    • 8
  • Harry V. Vinters
    • 3
    • 5
  • Lindsey B. Cornwell
    • 8
  • Tommy Saing
    • 8
  • Gregory M. Cole
    • 3
    • 4
    • 6
  • Karen Hoppens Gylys
    • 1
    Email author
  1. 1.School of Nursing and Mary S. Easton Center for Alzheimer’s ResearchUCLALos AngelesUSA
  2. 2.Department of MedicineDuke University Medical CenterDurhamUSA
  3. 3.Department of NeurologyUCLA School of MedicineLos AngelesUSA
  4. 4.Department of MedicineUCLA School of MedicineLos AngelesUSA
  5. 5.Department of Pathology and Laboratory MedicineUCLA School of MedicineLos AngelesUSA
  6. 6.Sepulveda VAMC GRECCLos AngelesUSA
  7. 7.Departments of Pathology, Neurology, and Program in NeuroscienceKeck USC School of MedicineLos AngelesUSA
  8. 8.Institute for Memory Impairments and Neurological DisordersUC IrvineIrvineUSA

Personalised recommendations